"Babes-Bolyai" University of Cluj-Napoca
Faculty of Mathematics and Computer Science


Curriculum for
Academic Year 2006/2007

Mathematics

Semester 5

Code Subject
Hours: C+S+L
Form of Exam.
Credits
MO004 Functional Analysis (1)
2+2+0
E
6 cr.
MG004 Riemannian Geometry
2+1+0
E
6 cr.
ME003 Partial Differential Equations (1)
2+2+0
E
6 cr.
MC001 Numerical Analysis (1)
2+2+2
E
6 cr.
MM002 Theoretical Mechanics (2)
2+1+0
E
6 cr.
TOTAL
10+8+2=20
 
30 cr.
Facultative Courses:
YZ105 Didactics of Mathematics
2+1+0
C
4 cr.

Semester 6

Code Subject
Hours: C+S+L
Form of Exam.
Credits
MO005 Functional Analysis (2)
2+1+0
E
5 cr.
ME004 Partial Differential Equations (2)
2+1+0
E
5 cr.
MC003 Probability Theory
2+2+0
E
5 cr.
MC002 Numerical Analysis (2)
2+1+0
C
5 cr.
MM003 Astronomy
2+1+1
E
5 cr.
MI038 Office Automation
2+0+2
E
5 cr.
TOTAL
12+6+3=21
 
30 cr.
Facultative Courses:
Y015 Practice of education - Mathematics
0+4+0
C
5 cr.
Y017 Optional subject psycho-pedagogy
1+2+0
C
3.5 cr.

Semester 7

Code Subject
Hours: C+S+L
Form of Exam.
Credits
MO006 Operations Research
2+2+0
E
6 cr.
MC004 Mathematical Statistics
2+2+1
E
6 cr.
MS001 Optional Course 1
2+2+0
C
6 cr.
MS002 Optional Course 2
2+2+0
C
6 cr.
MS003 Optional Course 3
2+2+0
C
6 cr.
TOTAL
10+10+1=21
 
30 cr.
Facultative Courses:
MA006 History of Mathematics
2+0+0
C
3 cr.
YZ108 Pedagogical Practice - Mathematics
0+4+0
C
4 cr.
YZ111 Intercultural education
1+2+0
C
3.5 cr.
YZ112 Management of didactic activity
1+2+0
C
3.5 cr.
YZ113 Educational counselling
1+2+0
C
3.5 cr.
Subjects for optional course 1.
Package 1:
MA008 Theory of Categories
2+2+0
6 cr.
MA028 Special Topics in Module Theory
2+2+0
6 cr.
Package 2:
MO009 Advanced Mathematical Analysis
2+2+0
6 cr.
MO044 Convex Functions
2+2+0
6 cr.
Subjects for optional course 2.
Package 1:
MG009 Complements of Geometry
2+2+0
6 cr.
MG012 Lie Groups and Lie Algebras
2+2+0
6 cr.
Package 2:
MG009 Complements of Geometry
2+2+0
6 cr.
MG021 Projective Geometry
2+2+0
6 cr.
Subjects for optional course 3.
Package 1:
ME048 Fixed Point Theory and Applications
2+2+0
6 cr.
ME012 Mathematical Modelling
2+2+0
6 cr.
Package 2:
MT030 Geometric Function Theory
2+2+0
6 cr.
MT034 Differential Subordinates and Hardy Spaces
2+2+0
6 cr.

Semester 8

Code Subject
Hours: C+S+L
Form of Exam.
Credits
MS004 Optional Course 4
2+2+0
E
7.5 cr.
MS005 Optional Course 5
2+2+0
E
7.5 cr.
MS006 Optional Course 6
2+2+0
E
7.5 cr.
MS007 Optional Course 7
2+2+0
E
7.5 cr.
TOTAL
8+8+0=16
 
30 cr.
Subjects for optional course 4.
Package 1:
MO010 Numerical Solutions of Equations
2+2+0
7.5 cr.
MO049 Vector Optimization
2+2+0
7.5 cr.
Package 2:
MA024 Cryptography
2+2+0
7.5 cr.
MA025 Algebraic Number Theory
2+2+0
7.5 cr.
Subjects for optional course 5.
Package 1:
MT027 Univalent Functions and Hardy Spaces
2+2+0
7.5 cr.
MT030 Geometric Function Theory
2+2+0
7.5 cr.
Package 2:
ME039 Discrete and Recurrence Equations
2+2+0
7.5 cr.
ME050 Special Topics in Differential Equations
2+2+0
7.5 cr.
Subjects for optional course 6.
Package 1:
MC029 Multivariate Approximation
2+2+0
7.5 cr.
MC030 Theory of Linear Operators
2+2+0
7.5 cr.
Package 2:
MC031 Stochastic Processes and Fractals
2+0+2
7.5 cr.
MC032 Introduction to Wavelets
2+2+0
7.5 cr.
Subjects for optional course 7.
Package 1:
MM014 Computational Methods in Fluid Mechanics
2+2+0
7.5 cr.
MM006 Special Topics in Astronomy
2+2+0
7.5 cr.
Package 2:
MM004 Celestial Mechanics
2+2+0
7.5 cr.
MM006 Special Topics in Astronomy
2+2+0
7.5 cr.