"Babes-Bolyai" University of Cluj-Napoca
Faculty of Mathematics and Computer Science

Partial Differential Equations (1)
Code
Semes-
ter
Hours: C+S+L
Type
Section
ME003
5
2+2+0
compulsory
Matematica
ME003
7
2+2+0
compulsory
Matematică-Informatică
ME003
7
2+2+0
compulsory
Matematici aplicate
Teaching Staff in Charge
Prof. PRECUP Radu, Ph.D.,  r.precupmath.ubbcluj.ro
Prof. TRIF Damian, Ph.D.,  dtrifmath.ubbcluj.ro
Assoc.Prof. BEGE Antal, Ph.D.,  begemath.ubbcluj.ro
Aims
Assimilation of the basic elements of classical and modern theory of
linear partial differential equations.
Content
1. Classical theory for partial differential equations of second order: fundamental solutions of Laplace equations, maximum principles, uniqueness theorems, Green functions.
2. Separable variables method. Fourier method.
3. Generalized solutions for Dirichlet and Neumann problems associated to Poisson and Laplace equations.
4. Fourier transform method in the theory of partial differential equations.
References
1. BARBU, V., Probleme la limita pentru ecuatii cu derivate partiale, Ed. Acad. Române, Bucuresti, 1993.
2. BRÉZIS, H., Analyse fonctionelle. Théorie et applications, Masson, Paris, 1983.
3. GILBARG, D., TRUDINGER, N.S., Elliptic partial differential equations of second order, Springer, Berlin, 1983.
4. PRECUP, R., Lectii de ecuatii cu derivate partiale, Presa Universitara Clujeana, 2004.
5. SIMON, L., BADERKO, E.A., Másodrendu parciális differenciálegyenletek, Tankönyvkiadó, Budapest, 1983.
6. SZILÁGYI P., Másodrendu parciális differenciálegyenletek, BBTE, Kolozsvár, 1998.
7. VLADIMIROV, V.S., Ecuatiile fizicii matematice, Ed. St. Enc., Bucuresti, 1981 (Bevezetés a parciális differenciálegyenletek elméletébe, Muszaki Kiadó, Budapest, 1980).
8. TRIF, D., Ecuatii cu derivate partiale, UBB, Cluj, 1993.
Assessment
Written and oral examination
Links: Syllabus for all subjects
Romanian version for this subject
Rtf format for this subject