Advanced Mathematical Analysis |
ter |
||||
Teaching Staff in Charge |
Lect. FINTA Zoltan, Ph.D., fzoltanmath.ubbcluj.ro |
Aims |
Presentation of the main complementary notions and results in Mathematical Analysis. |
Content |
1.Inequalities.
2. Sequences. Generalizations of the notion of limit. 3. Limits of functions. Generalizations of the notion of limit of a function. 4. Continuous functions. Generalizations of the notion of continuity. Special classes of continuous functions. 5. Generalization of the notion of derivativ. Generalizations of the mean theorems of the differential calculus. 6. Integrable functions. Generalization of the notion of the integral. The role of the systems of intermediary points in the definition of the integral. |
References |
1. Siretchi Gh.: Functii cu proprietatea Darboux, Universitatea din Bucuresti,
Bucuresti, 1986. 2. Leader S.: The Kurzweil-Henstock integral and its differentials: a unified theory of integration on R and R^{n}, Marcel Dekker, Inc., Basel, 2001. 3. Precupanu A.: Analiza matematica (Functii reale), Editura Didactica si Pedagogica, Bucuresti, 1976. 4. Balazs M. - Kolumban J.: Matematikai Analizis, Dacia Konyvkiado, Koloszvar, 1978. 5. Szokefalvi-Nagy B.: Valos fuggvenyek es fuggvenysorok, Tankonyvkiado, Budapest, 1977. |
Assessment |
Exam. |
Links: | Syllabus for all subjects Romanian version for this subject Rtf format for this subject |