Babes-Bolyai University of Cluj-Napoca
Faculty of Mathematics and Computer Science
Study Cycle: Graduate

SUBJECT

Code
Subject
MMG0001 Geometry 1 (Analytic Geometry)
Section
Semester
Hours: C+S+L
Category
Type
Mathematics
1
2+2+0
fundamental
compulsory
Mathematics and Computer Science
1
2+2+0
fundamental
compulsory
Applied Mathematics
1
2+2+0
fundamental
compulsory
Teaching Staff in Charge
Lect. VACARETU Daniel, Ph.D.,  vacaretumath.ubbcluj.ro
Prof. VARGA Csaba Gyorgy, Ph.D.,  csvargacs.ubbcluj.ro
Lect. ANDRAS Szilard Karoly,  andraszmath.ubbcluj.ro
Aims
In the first part the course makes a gradual passage from the geometry studied in high-scholl to the principal notions of the three dimensional geometry and after that the objects of the three dimensional geometry are considered.
Content
I. Analytic geometry of plane.
1. Vectorial space of free vectors.
2. Vectorial equations of straight lines.
3. Cartesian equations of straight lines in plane.
4. Circle.
5. Conics.
II. Analytic geometry in three-dimensional euclidean space.
1. Vectorial equations of straight lines and planes in space.
2. Cartesian equations of straight lines.
III. Geometric transformations.
1. Izometries of euclidean plane: simetries, translations, rotations.
2. Homotety.
3. Inversion.
3. Cartesian equations of planes.
4. Sphere.
5. Cuadrics.
6. Generated surfaces.
References
2. Andrica, D., Topan, L. Analytic Geometry, Cluj Unversity Press, 2004
2. ANDRICA, D., VARGA, CS., VACARETU, D., Teme de geometrie, Ed. Promedia-Plus, Cluj-Napoca, 1997
3. ANDRICA, D., VARGA, CS., VACARETU, D., Teme si probleme alese de geometrie, Ed.Plus, Bucuresti,2002
4. GALBURA, GH., RADO, F., Geometrie, Ed. Did. si Ped. Bucuresti, 1979.
5. MIRON,R., Geometrie Analitica,Ed.Did. si Ped., Bucuresti, 1976.
6. MURGULESCU,E., si col.,Geometrie analitica si diferentiala,Ed.Did.si Ped.,Bucuresti,1971.
7. PINTEA, C., Geometrie, Presa Universitara Clujeana,2001.
8. UDRISTE, C., TOMULEANU, V., Geometrie analitica, Manual pentru clasa a-XI-a, Ed. Did si Ped. Bucuresti
Assessment
Final exam + 2 assessement tests + homework
Links: Syllabus for all subjects
Romanian version for this subject
Rtf format for this subject