Babes-Bolyai University of Cluj-Napoca
Faculty of Mathematics and Computer Science
Study Cycle: Master

SUBJECT

Code
Subject
MMA1024 The Role of Counterexamples in Teaching of Mathematical Analysis
Section
Semester
Hours: C+S+L
Category
Type
Didactic Mathematics - in Hungarian
4
2+2+0
speciality
compulsory
Teaching Staff in Charge
Prof. KASSAY Gabor, Ph.D.,  kassaymath.ubbcluj.ro
Aims
Systematization and classification of the main concepts of calculus for real functions of one real viariable using different kind of counterexamles. Presentation of wrong solutions in order to avoid them.
Content
Course and tutorial 1: Counterexamples relative to sequences.
Course and tutorial 2: Counterexamples relative to series and their convergence criteria.
Course and tutorial 3: Counterexamples relative to the limit and continuity of real functions.
Course and tutorial 4: Properties of differentiable functions.
Course and tutorial 5: Counterexamples relative to the mean-value theorems of differential calculus.
Course and tutorial 6: Counterexamples relative to convex functions.
Course and tutorial 7: Counterexamples relative to graphical representations of functions.
Course and tutorial 8: Functions with Darboux property.
Course and tutorial 9: Riemann integrable functions.
Course and tutorial 10: Set with zero measure (Jordan or Lebesgue. Lebesgue criterium for Riemann integrability.
Course and tutorial 11: Monotone, odd/even, periodics and linear functions. Primitives.
Course and tutorial 12: Mean-value theorems of integral calculus.
Course and tutorial 13: Improper integrals.
Course and tutorial 14: Counterexamples relative to sequences and series of functions.
References
1. Balázs M. - Hatházi A. : Matematika, Erdélyi Tankönyvtanács, Kolozsvár, 2006.
2. Balázs M. : Matematika analízis, Erdélyi Tankönyvtanács, Kolozsvár, 2006.
3. Crăciun C.V. : Analiză matematică (Materiale pentru perfecţionarea profesorilor de liceu), Universitatea din Bucureşti, Facultatea de Matematică, Bucureşti, 1992.
4. Crăciun C.V. : Contraexemple în analiza matematică, Universitatea din Bucureşti, Facultatea de Matematică, Bucureşti, 1989.
5. Crăciun C.V. : Teoreme de medie din analiza matematică, Universitatea din
Bucureşti, Facultatea de Matematică, Bucureşti, 1986.
6. Gelbaum B.R. – Olmsted J.M.H. : Contraexemple în analiză, Editura Ştiinţifică,
Bucureşti, 1973.
7. Sireţchi Gh. : Calculul diferenţial şi integral, vol. I-II, Editura Ştiinţifică şi Enciclopedică, Bucureşti, 1985.
8. Sireţchi Gh. : Calculul diferenţial, Universitatea din Bucureşti, Facultatea de Matematică, Bucureşti, 1983.
9. Sireţchi Gh. : Funcţii cu proprietatea Darboux, Universitatea din Bucureşti, Facultatea de Matematică, Bucureşti, 1986.
10)Rădulescu S. – Rădulescu M. : Teoreme şi probleme de analiză matemaitică, Editura Didactică şi Pedagogică, Bucureşti, 1982.
Assessment
written exam 40%, homeworks 30%, presentations 30%.
Links: Syllabus for all subjects
Romanian version for this subject
Rtf format for this subject