Babes-Bolyai University of Cluj-Napoca
Faculty of Mathematics and Computer Science
Study Cycle: Graduate

SUBJECT

Code
Subject
MA025 Algebraic Number Theory
Section
Semester
Hours: C+S+L
Category
Type
Mathematics - in Hungarian
8
2+2+0
optional
Mathematics-Computer Science - in Hungarian
8
2+2+0
optional
Teaching Staff in Charge
Prof. MARCUS Andrei, Ph.D.,  marcusmath.ubbcluj.ro
Aims
Deepening the knowledge in arithmetics and number theory studied in previous semesters. Presentation of notions and results which are useful for a future teacher and mathematician.
Content
Integral domains. Divisibility. Euclidean and factorial rings.
The structure of the group of units of Z/nZ. Primitive roots and indices.
Congruences of higher degree. Quadratic residues and quadratic reciprocity. Algebraic number fields. Integral extensions of commutative rings. Quadratic fields. The ring of Gauss and Euler integers. Diophantine ecuations.
References
1. K. IRELAND, M. ROSEN: A Classical Introduction to Number Theory, Springer-Verlag 1990.
2. T. ALBU, I. D. ION: Capitole de teoria algebrica a numerelor, Ed. Academiei, Bucuresti 1984.
3. I. NIVEN, H. ZUCKERMAN : Bevezetes a szamelmeletbe, Muszaki Konyvkiado, Budapest, 1978.
4. P. ERDOS, J. SURANYI: Valogatott fejezetek a szamelmeletbol, Polygon, Szeged, 1996.
5. A. SARKOZI, J. SURANYI: Szamelmelet-feladatgyujtemeny, Tankonyvkiado, Budapest, 1979.
Assessment
Homework. Essays. Exam.
Links: Syllabus for all subjects
Romanian version for this subject
Rtf format for this subject