"Babes-Bolyai" University of Cluj-Napoca
Faculty of Mathematics and Computer Science

Geometry 1
Code
Semes-
ter
Hours: C+S+L
Type
Section
MMG0001
1
2+2+0
compulsory
Matematica
MMG0001
1
2+2+0
compulsory
Matematică informatică
MMG0001
1
2+2+0
compulsory
Matematici aplicate
Teaching Staff in Charge
Lect. VACARETU Daniel,  vacaretumath.ubbcluj.ro
Prof. VARGA Csaba Gyorgy, Ph.D.,  csvargacs.ubbcluj.ro
Asist. ANDRAS Szilard Karoly,  andraszmath.ubbcluj.ro
Aims
In the first part the course makes a gradual passage from the geometry studied in high-scholl to the principal notions of the three dimensional geometry and after that the objects of the three dimensional geometry are considered.
Content
I. Geometric transformations.
1. Izometries of euclidean plane: simetries, translations, rotations.
2. Homotety.
3. Inversion.
II. Analytical geometry of plane.
1. Vectorial space of free vectors.
2. Vectorial equations of straight lines.
3. Cartesian equations of straight lines in plane.
4. Circle.
5. Conics.
III. Analytical geometry in three-dimensional euclidean space.
1. Vectorial equations of straight lines and planes in space.
2. Cartesian equations of straight lines.
3. Cartesian equations of planes.
4. Sphere.
5. Cuadrics.
6. Generated surfaces.
References
1. ANDRICA, D., VARGA, CS., VACARETU, D., Teme de geometrie, Ed. Promedia-Plus, Cluj-Napoca, 1997
2. ANDRICA, D., VARGA, CS., VACARETU, D., Teme si probleme alese de geometrie, Ed.Plus, Bucuresti,2002
3. GALBURA, GH., RADO, F., Geometrie, Ed. Did. si Ped. Bucuresti, 1979.
4. MIRON,R., Geometrie Analitica,Ed.Did. si Ped., Bucuresti, 1976.
5. MURGULESCU,E., si col.,Geometrie analitica si diferentiala,Ed.Did.si Ped.,Bucuresti,1971.
6. PINTEA, C., Geometrie, Presa Universitara Clujeana,2001.
7. UDRISTE, C., TOMULEANU, V., Geometrie analitica, Manual pentru clasa a-XI-a, Ed. Did si Ped. Bucuresti
Assessment
Exam.
Links: Syllabus for all subjects
Romanian version for this subject
Rtf format for this subject