Exponential growth of solutions with \(L_p\)-norm of a nonlinear viscoelastic wave equation with strong damping and source and delay terms

Abdelbaki Choucha, Djamel Ouchenane

Abstract


In this work, we are concerned with a problem for a viscoelastic wave equation with strong damping, nonlinear source and delay terms. We show the exponential growth of solutions with \(L_p\)-norm.

Keywords


strong damping, viscoelasticity, nonlinear source, exponential growth; delay.

Full Text:

PDF

References


J. Ball. Remarks on Blow-Up and Nonexistence Theorems for Nonlinear Evolutions Equation. Quarterly Journal of Mathematics, 28, (1977)473-486.

S. Berrimi, S. Messaoudi, Existence and decay of solutions of a viscoelastic equation with a nonlinear source, Nonlinear Analysis, 64 ( 2006), 2314-2331.

I. Bialynicki-Birula,J. Mycielsk. Wave equations with logarithmic nonlinearities. Bull Acad Polon Sci Sr SciMath Astron Phys. 1975;23:461-466.

M. M. Cavalcanti, D. Cavalcanti, J. Ferreira, Existence and uniform decay for nonlinear viscoelastic equation with strong damping, Math. Meth. Appl. Sci., 24 (2001), 1043-1053.

M. M. Cavalcanti, D. Cavalcanti, P. J. S. Filho, J. A. Soriano, Existence and uniform decay rates for viscoelastic problems with nonlinear boundary damping, Difierential and integral equations, 14 (2001), 85-116.

T. Cazenave, A. Haraux. Equations d'volution avec non-linearite logarithmique. Ann Fac Sci Toulouse Math (5). 1980;2(1):21-51.

T. Cazenave, A.Haraux. Equation de Schrodinger avec non-linearite logarithmique. C R Acad Sci Paris Ser A-B. (1979);288:A253-A256.

X. Han. Global existence of weak solution for a logarithmic wave equation arising from Q-ball dynamics. Bull Korean Math Soc. (2013);50:275-283.

A. Haraux, E. Zuazua. Decay Estimates for Some Semilinear Damped Hyperbolic Problems. Archive for Rational Mechanics and Analysis, 100, (1988)191-206.

V. Georgiev, G. Todorova. Existence of Solutions of the Wave Equation with Nonlinear Damping and Source Terms. Journal of Difierential Equations, 109, (1994)295-308.

P. Gorka, Convergence of logarithmic quantum mechanics to the linear one. Lett Math Phys. (2007);81:253-264.

P. Gorka. Logarithmic quantum mechanics: existence of the ground state. Found Phys Lett. (2006);19:591-601.

M. Kafini, S.A. Messaoudi. A Blow-Up Result in a Cauchy Viscoelastic Problem. Applied Mathematics Letters, 21, (2008)549-553.

M. Kafini, S.A. Messaoudi. Local existence and blow up of solutions to a logarithmic nonlinear wave equation with delay, Applicable Analysis, (2018) DOI: 10.1080/00036811.2018.1504029.

M. Kafini, S.A. Messaoudi. A Blow-Up Result in a Cauchy Viscoelastic Problem. Applied Mathematics Letters, 21, 549-553(2008). http://dx.doi.org/10.1016/j.aml.2007.07.004

H.A. Levine. Instability and Nonexistence of Global Solutions of Nonlinear Wave Equation of the Form Putt = Au + F(u). Transactions of the American Mathematical Society, 192, (1974) 1-21.

G. Liang, Y. Zhaoqin, L. Guonguang, Blow Up and Global Existence for a Nonlinear Viscoelastic Wave Equation with Strong Damping and Nonlinear Damping and Source terms, Applied Mathematics, 6, (2015)806-816.

S.A. Messaoudi. Blow Up and Global Existence in a Nonlinear Viscoelastic Wave Equation. Mathematische Nachrichten, 260, (2003)58-66.

http://dx.doi.org/10.1002/mana.200310104.

S.A. Messaoudi. Blow Up in a Nonlinearly Damped Wave Equation. Mathematische Nachrichten, 231, (2001)105-111.

S.A. Messaoudi. Blow Up of Positive-Initial-Energy Solutions of a Nonlinear Viscoelastic Hyperbolic Equation. Journal of Mathematical Analysis and Applications, 320, (2006)902-915.

S. Nicaise, C. Pignotti, Stabilization of the wave equation with boundary or internal distributed delay, Diff. Int. Equs., 21 (9-10), 935-958 (2008).

H.T. Song, and D.S. Xue, Blow up in a Nonlinear Viscoelastic Wave

Equation with Strong Damping. Nonlinear Analysis, 109, 245-251 (2014).

http://dx.doi.org/10.1016/j.na.2014.06.012.

W. Shun-Tang, T. Long-Yi , On global existence and blow-up of solutions or an integro-difierential equation with strong damping, Taiwanese J. Math., 10 (2006), 979-1014.

H.T. Song, and C.K. Zhong, Blow-Up of Solutions of a Nonlinear Viscoelastic Wave Equation. Nonlinear Analysis: Real World Applications, 11, 3877-3883(2010). http://dx.doi.org/10.1016/j.nonrwa.2010.02.015.

K. Zennir, Exponential growth of solutions with Lp-norm of a nonlinear viscoelastic hyperbolic equation, J. Nonlinear Sci. Appl. 6 (2013), 252-262.




DOI: http://dx.doi.org/10.24193/subbmath.2023.2.12

Refbacks

  • There are currently no refbacks.