An upper bound of the Hankel determinant of third order for the inverse of reciprocal of Bounded turning functions

Deekonda Vamshee Krishna, Dasumahanthi Shalini

Abstract


The objective of this paper is to obtain an upper bound of the third order Hankel determinant for the inverse of the function f, when f belongs to the reciprocal of bounded turning functions with new approach. 


Keywords


Bounded turning function; upper bound; third Hankel functional; positive real function.

Full Text:

PDF

References


Ali, R. M., Coefficients of the inverse of strongly starlike functions, Bull. Malays. Math. Sci. Soc., (second series), 26(2003), no. 1, 63 - 71.

Arif, Muhammad., Lubna Rani, Raza, Mohsan., and Zaprawa, P., Fourth Hankel determinant for the family of functions with bounded turning, Bull. Korean Math. Soc. 55(2018), no. 6, 1703-1711.

Babalola, K. O., On H3(1) Hankel determinant for some classes of univalent functions, Inequality Theory and Applications, (ed. Y. J. Cho)(Nova Science Publishers, New York), no. 6, 1-7.

Bansal, D., Maharana, S., Prajapat, J. K., Third order Hankel determinant for certain univalent functions, J. Korean Math. Soc., 52(2015), no. 6, 1139-1148.

De Branges de Bourcia Louis, A proof of Bieberbach conjecture, Acta Math., 154(1985), no. (1-2), 137-152.

Cho, N. E., Kowalczyk, B., Kwon, O. S., Lecko, A., Sim, Y. J., The bounds of some determinants for starlike functions of order alpha, Bull. Malays. Math. Sci. Soc., 41(2018), no. 1, 523-535.

Duren, P. L., Univalent functions, Grundlehren der Mathematischen Wissenschaften, Band 259, Springer-Verlag, New York, Berlin, Heidelberg and Tokyo, 1983.

Ehrenborg, R., The Hankel determinant of exponential polynomials, Amer. Math. Monthly, 107(2000), no. 6, 557-560.

Fekete, M., Szego, G., Eine bemerkung uber ungerade schlichte funktionen, J. Lond. Math. Soc, s1-8(1933), no. 2, 85-89.

Hayami, T., Owa, S., Generalized Hankel determinant for certain classes, Int. J. Math. Anal., 4(2010), no. 49-52, 2573-2585.

Janteng, A., Halim, S. A., Darus, M., Hankel Determinant for starlike and convex functions, Int. J. Math. Anal., 1(2007), no. 13-16, 619-625.

Janteng, A., Halim, S. A., Darus, M., Coefficient inequality for a function whose derivative has a positive real part, J. Inequal. Pure Appl. Math., 7(2006), no. 2, 1-5.

Kowalczyk, B., Lecko, A., Sim, Y. J., The sharp bound for the Hankel determinant of the Third kind for convex functions, Bull. Aust. Math. Soc., 97(2018), no. 3, 435-445.

Layman, J. W., The Hankel transform and some of its properties, J. Integer Seq., 4(2001), no. 1, 1-11.

Lecko, A., Sim, Y. J., Smiarowska, B., The Sharp Bound of the Hankel Determinant of the Third kind for starlike functions of order 1/2, Complex Analysis and Operator Theory, 13(2019), no. 5, 2231-2238.

Lee, S. K., Ravichandran, V., Supramaniam, S., Bounds for the second Hankel determinant of certain univalent functions, J. Inequal. Appl.(2013). Art. 281. doi:10.1186/1029-242X-2013-281.

Libera, R. J., Zlotkiewicz, E. J., Coefficient bounds for the inverse of a function with derivative in P, Proc. Amer. Math. Soc., 87(1983), no. 2, 251-257.

Livingston, A. E., The coefficients of multivalent close-to-convex functions, Proc. Amer. Math. Soc., 21(1969), no. 3, 545552.

MacGregor, T. H., Functions whose derivative have a positive real part, Trans. Amer. Math. Soc., 104(1962), no. 3, 532-537.

Noor, K. I., Hankel determinant problem for the class of functions with bounded boundary rotation, Rev. Roumaine Math. Pures Appl., 28(1983), no. 8, 731-739.

Orhan, H., Zaprawa, P., Third Hankel determinants for starlike and convex funxtions of order alpha, Bull. Korean Math. Soc., 55(2018), no. 1, 165-173.

Pommerenke, Ch., Univalent functions, Gottingen: Vandenhoeck and

Ruprecht; 1975.

Pommerenke, Ch., On the coefficients and Hankel determinants of univalent functions, J. Lond. Math. Soc., 41(s-1)(1966), no. 1, 111-122.

Raza, M., Malik, S. N., Upper bound of third Hankel determinant for a class of analytic functions related with lemniscate of Bernoulli, J Inequal. Appl. (2013). Art. 412. doi:10.1186/1029-242X-2013-412.

Sudharsan, T. V., Vijayalakshmi, S. P., Stephen, B. A., Third Hankel determinant for a subclass of analytic functions, Malaya J. Math., 2(2014), no. 4, 438-444.

Vamshee Krishna, D., Shalini, D., Bound on H3(1) Hankel determinant for pre-starlike functions of order , Proyecciones J. Math., 37(2018), no. 2, 305-315.

Venkateswarlu, B., Vamshee Krishna, D., Rani, N., Third Hankel determinant for the inverse of reciprocal of bounded turning functions, Bul. Acad. Stiinte Repub. Mold. Mat., 78(2015), no. 2, 50-59.

Vamshee Krishna, D., RamReddy, T., Coefficient inequality for certain p- valent analytic functions, Rocky Mountain J. Math., 44(2014), no. 6, 1941-1959.

Zaprawa, P., Third Hankel determinants for subclasses of Univalent functions, Mediterr. J. Math., 14(2017), no. 1, 1-10.




DOI: http://dx.doi.org/10.24193/subbmath.2023.2.03

Refbacks

  • There are currently no refbacks.