Transmission problem between two Herschel-Bulkley fluids in thin layer
Abstract
Keywords
Full Text:
PDFReferences
Boughanim, F., Boukrouche, M., Smaoui, H., Asymptotic Behavior of a NonNewtonian Flow with Stick-Slip Condition, 2004-Fez Conference on Differential Equations and Mechanics, Electronic Journal of Differential Eduations, conference 11, 2004, 71-80.
Bourgeat, A., Mikelic, A., Tapi´ero, R., Dérivation des Equations Moyennées Décrivant un Ecoulement Non Newtonien Dans un Domaine de Faible Epaisseur, C. R. Acad. Sci. Paris, 316(I)(1993), 965-970.
Brezis, H., Equations et In´equations Non Linéaires dans les Espaces en Dualité, Annale de l’Institut Fourier, 18(1996), no. 1, 115-175.
Bunoin, R., Kesavan, S., Fluide de Bingham dans une Couche Mince, Annals of university of Craiova, Maths. Comp. Sci. Ser, 30(2003), 71-77.
Bunoin, R., Saint Jean Paulin, J., Nonlinear Viscous Flow Through a Thin Slab in the Lubrification Case, Rev. Roum. Math. Pures et Appliqées, 45(4)(2000), 577-591.
Duvaut, G., Lions, J.L., Les In´equations en Mécanique et en physique, Dunod, 1976.
Ekeland, I., Temam, R., Analyse Convexe et Problèmes Variationnels, Dunod, Paris, 1974.
Lions, J. L., Quelques Méthodes de R´esolution des Probèmes Aux Limites Non Linéeaires, Dunod, 1996.
Liu, K. F., Mei, C.C., Approximate Equations for the Slow Spreading of a Thin Sheet of Bingham Plastic Fluid, Phys. Fluids A, 2(1)(1990), 30-36.
M´alek, J., Mathematical Properties of Flows of Incompressible Power-Law-Like fluids that are Described by Implicit Constitutive Relations, Electronic Transactions on Numerical Analysis, 31(2008), 110-125.
Mâlek, J., Ruzicka, M., Shelukhin, V.V., Herschel-Bulkley fluids, Existence and Regularity of Steady Flows, Maths. Models Methods Appl. Sci., 15(12)(2005), 1845-1861.
Messelmi, F., Merouani, B., Flow of Herschel-Bulkley fluid through a two dimensional thin layer, Stud. Univ. Babe¸s-Bolyai Math. 58(2013), No. 1, 119-130.
Messelmi, F., Effects of the Yield Limit on the Behaviour of Herschel-Bulkley fluid, Nonlinear Sci. Lett. A, 2(2011), no. 3, 137-142.
Messelmi, F., Merouani, B., Bouzeghaya, F., Steady-State Thermal HerschelBulkley Flow with Tresca’s Friction Law, Electronic Journal of Differential Equations, 2010(2010), no. 46, 1-14.
Mikelic, A., Tapiéro, R., Mathematical Derivation of the Power Law Describing Polymer Flow Through a Thin Layer, 29(1995), 3-23.
DOI: http://dx.doi.org/10.24193/subbmath.2023.3.14
Refbacks
- There are currently no refbacks.