Generalized result on the global existence of positive solutions for a parabolic reaction diffusion model with a full diffusion matrix
DOI:
https://doi.org/10.24193/subbmath.2023.2.11Keywords:
global existence, compact semigroups, reaction diffusion systems.Abstract
In this paper, we study the global existence in time of solutions for a parabolic reaction diffusion model with a full matrix of diffusion coefficients on a bounded domain. The technique used is based on compact semigroup methods and some estimates. Our objective is to show, under appropriate hypotheses, that the proposed model has a global solution with a large choice of nonlinearities.References
: N. Alaa, S. Mesbahi, W. Bouarifi, Global existence of weak solutions for parabolic triangular reaction diffusion systems applied to a climate model, An. Univ. Craiova Ser. Mat. Inform., Vol. 42(1) (2015), 80-97.
: N. Alaa, S. Mesbahi, A. Mouida, W. Bouarifi, Existence of solutions for quasilinear elliptic degenerate systems with L¹ data and nonlinearity in the gradient, Electron. J. Diff. Equ., Vol. 2013 (2013), No. 142, 1-13.
: N.D. Alikakos, L^{p}-bounds of solutions of reaction diffusion equations, Comm. Partial Differential Equations 4 (1979), 827-868.
: S. Bonafede, D. Schmitt, Triangular reaction diffusion systems with integrable initial data, Nonlinear analysis 33 (1998), 785-801.
: N.F. Britton, Reaction diffusion equations and their applications to Biology, Academic Press, London, (1986).
: P.C. Fife, Mathematical aspects of reacting and diffusing systems, Lecture Notes in Biomath. 28, Springer-Verlag, Berlin, New York, (1979).
: A. Haraux, A. Youkana, On a result of K. Masuda concerning reaction diffusion equations, Tohoku Math. J. 40 (1988), 159-163.
: A. Haraux, M. Kirane, Estimations C¹ pour des problèmes paraboliques semi-lineaires, Ann. Fac. Sci. Toulouse Math., 5 (1983), 265-280.
: D. Henry, Theory of semilinear parabolic equations, Lecture notes in Math, 840, Springer-Verlag, New York (1984).
: S.L. Hollis, R. H. Martin, M. Pierre, Global existence and boundedness in reaction diffusion systems, SIAM J. Math. anal, 18: (1987), 744-761.
: S. Kouachi, Invariant regions and global existence of solutions for reaction diffusion systems with full matrix of diffusion coefficients and nonhomogeneous boundary conditions, Georgian Math. J., 11 (2004), 349-359.
: S. Kouachi, A. Youkana, Global existence for a class of reaction diffusion systems, Bull. Polish. Acad. Sci. Math. 49(3), (2001).
: O.A. Ladyzenskaya, V. A Solonnikov, N. N Uralceva, Linear and quasilinear equations of parabolic type, Trans. Math. Monographs. vol. 23, AMS; Providence, R. I, (1968).
: J. L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod : Gauthier-Villars, 1969.
: K. Masuda, On the global existence and asymptotic behaviour of solution of reaction diffusion equations, Hokkaido Math, J. 12: (1983), 360-370.
: M. Mebarki, A. Moumeni, Global solution of system reaction diffusion with full matrix, Global Journal of Mathematical Analysis, (2015), 04-25.
: S. Mesbahi, N. Alaa, Mathematical analysis of a reaction diffusion model for image restoration, An. Univ. Craiova Ser. Mat. Inform., Vol. 42 (1) (2015), 70-79.
: S. Mesbahi, N. Alaa, Existence result for triangular reaction diffusion systems with L¹ data and critical growth with respect to the gradient, Mediterr. J. Math., 10 (2013), 255-275.
: A. Moumeni, N. Barrouk, Existence of global solutions for systems of reaction diffusion with compact result, IJPAM. 102(2) (2015), 169-186.
: A. Moumeni, N. Barrouk, Triangular reaction diffusion systems with compact result, GJPAM. 11(6) (2015), 4729-4747.
: J. D. Murray, Mathematical Biology I : An Introduction, volume I, Springer-Verlag, 3rd edition, 2003.
: J. D. Murray, Mathematical Biology II : Spatial Models and Biochemical Applications, volume II, Springer-Verlag, 3rd edition, 2003.
: A. Pazy, Semigroups of linear operators and applications to partial differential equations, Springer-Verlag, New York, 1983.
: M. Pierre, Global existence in reaction diffusion systems with dissipation of mass : a survey, Milan J. Math., Vol. 78 (2) (2010), 417-455.
: F. Rothe, Global existence of reaction diffusion systems, Lecture Notes in Math, 1072, Springer-Verlag, Berlin, 1984.
: J. Smoller, Shock waves and reaction difussion systems, Springer-Verlag, New York, (1983).
Downloads
Additional Files
- Untitled
- Generalized result on the global existence of positive solutions for a parabolic reaction diffusion model with a full diffusion matrix
- Generalized result on the global existence of positive solutions for a parabolic reaction diffusion model with a full diffusion matrix
- Generalized result on the global existence of positive solutions for a parabolic reaction diffusion model with a full diffusion matrix
- Generalized result on the global existence of positive solutions for a parabolic reaction diffusion model with a full diffusion matrix
- Generalized result on the global existence of positive solutions for a parabolic reaction diffusion model with a full diffusion matrix
Published
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Transfer of copyright agreement: When the article is accepted for publication, the authors and the representative of the coauthors, hereby agree to transfer to Studia Universitatis Babeș-Bolyai Mathematica all rights, including those pertaining to electronic forms and transmissions, under existing copyright laws, except for the following, which the authors specifically retain: the authors can use the material however they want as long as it fits the NC ND terms of the license. The authors have all rights for reuse according to the license.