Generalized result on the global existence of positive solutions for a parabolic reaction diffusion model with a full diffusion matrix
Abstract
Keywords
Full Text:
PDFReferences
: N. Alaa, S. Mesbahi, W. Bouarifi, Global existence of weak solutions for parabolic triangular reaction diffusion systems applied to a climate model, An. Univ. Craiova Ser. Mat. Inform., Vol. 42(1) (2015), 80-97.
: N. Alaa, S. Mesbahi, A. Mouida, W. Bouarifi, Existence of solutions for quasilinear elliptic degenerate systems with L¹ data and nonlinearity in the gradient, Electron. J. Diff. Equ., Vol. 2013 (2013), No. 142, 1-13.
: N.D. Alikakos, L^{p}-bounds of solutions of reaction diffusion equations, Comm. Partial Differential Equations 4 (1979), 827-868.
: S. Bonafede, D. Schmitt, Triangular reaction diffusion systems with integrable initial data, Nonlinear analysis 33 (1998), 785-801.
: N.F. Britton, Reaction diffusion equations and their applications to Biology, Academic Press, London, (1986).
: P.C. Fife, Mathematical aspects of reacting and diffusing systems, Lecture Notes in Biomath. 28, Springer-Verlag, Berlin, New York, (1979).
: A. Haraux, A. Youkana, On a result of K. Masuda concerning reaction diffusion equations, Tohoku Math. J. 40 (1988), 159-163.
: A. Haraux, M. Kirane, Estimations C¹ pour des problèmes paraboliques semi-lineaires, Ann. Fac. Sci. Toulouse Math., 5 (1983), 265-280.
: D. Henry, Theory of semilinear parabolic equations, Lecture notes in Math, 840, Springer-Verlag, New York (1984).
: S.L. Hollis, R. H. Martin, M. Pierre, Global existence and boundedness in reaction diffusion systems, SIAM J. Math. anal, 18: (1987), 744-761.
: S. Kouachi, Invariant regions and global existence of solutions for reaction diffusion systems with full matrix of diffusion coefficients and nonhomogeneous boundary conditions, Georgian Math. J., 11 (2004), 349-359.
: S. Kouachi, A. Youkana, Global existence for a class of reaction diffusion systems, Bull. Polish. Acad. Sci. Math. 49(3), (2001).
: O.A. Ladyzenskaya, V. A Solonnikov, N. N Uralceva, Linear and quasilinear equations of parabolic type, Trans. Math. Monographs. vol. 23, AMS; Providence, R. I, (1968).
: J. L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod : Gauthier-Villars, 1969.
: K. Masuda, On the global existence and asymptotic behaviour of solution of reaction diffusion equations, Hokkaido Math, J. 12: (1983), 360-370.
: M. Mebarki, A. Moumeni, Global solution of system reaction diffusion with full matrix, Global Journal of Mathematical Analysis, (2015), 04-25.
: S. Mesbahi, N. Alaa, Mathematical analysis of a reaction diffusion model for image restoration, An. Univ. Craiova Ser. Mat. Inform., Vol. 42 (1) (2015), 70-79.
: S. Mesbahi, N. Alaa, Existence result for triangular reaction diffusion systems with L¹ data and critical growth with respect to the gradient, Mediterr. J. Math., 10 (2013), 255-275.
: A. Moumeni, N. Barrouk, Existence of global solutions for systems of reaction diffusion with compact result, IJPAM. 102(2) (2015), 169-186.
: A. Moumeni, N. Barrouk, Triangular reaction diffusion systems with compact result, GJPAM. 11(6) (2015), 4729-4747.
: J. D. Murray, Mathematical Biology I : An Introduction, volume I, Springer-Verlag, 3rd edition, 2003.
: J. D. Murray, Mathematical Biology II : Spatial Models and Biochemical Applications, volume II, Springer-Verlag, 3rd edition, 2003.
: A. Pazy, Semigroups of linear operators and applications to partial differential equations, Springer-Verlag, New York, 1983.
: M. Pierre, Global existence in reaction diffusion systems with dissipation of mass : a survey, Milan J. Math., Vol. 78 (2) (2010), 417-455.
: F. Rothe, Global existence of reaction diffusion systems, Lecture Notes in Math, 1072, Springer-Verlag, Berlin, 1984.
: J. Smoller, Shock waves and reaction difussion systems, Springer-Verlag, New York, (1983).
DOI: http://dx.doi.org/10.24193/subbmath.2023.2.11
Refbacks
- There are currently no refbacks.