Radius of starlikeness through subordination

Asha Sebastian, Vaithiyanathan Ravichandran

Abstract


A normalized function \(f\) on the open unit disc is starlike (or convex) univalent if the associated function \(zf'(z)/f(z)\)  (or \(1+zf''(z)/f'(z)\)) is a function with positive real part. The radius of starlikeness or convexity is usually obtained by using the estimates for functions with positive real part. Using subordination, we examine  the radius of various starlikeness, in particular, radii of Janowski starlikeness and  starlikeness of order beta, for the function f when the function f is either convex or  \((zf'(z)+\alpha z^2f''(z))/f(z)\) lies in the right-half plane. Radii of starlikeness associated with lemniscate of Bernoulli and exponential functions are also considered.

Keywords


univalent functions; convex functions; starlike functions; subordination; radius of starlikeness

Full Text:

PDF

References


R. M. Ali, N. E. Cho, N. K. Jain, and V. Ravichandran, Radii of starlikeness and convexity for functions with fixed second coefficient defined by subordination, Filomat, 26 (2012), pp. 553–561.

R. M. Ali, N. K. Jain, and V. Ravichandran, Radii of starlikeness associated with the lemniscate of bernoulli and the left-half plane, Appl. Math. Comput., 218 (2012), pp. 6557–6565.

M. K. Aouf, J. Dziok, and J. Sokó l, On a subclass of strongly starlike functions, Appl. Math. Lett., 24 (2011), pp. 27–32.

L. de Branges, A proof of the Bieberbach conjecture, Acta Math., 154 (1985), pp. 137–152.

A. Gangadharan, V. Ravichandran, and T. N. Shanmugam, Radii of convexity and strong starlikeness for some classes of analytic functions, J. Math. Anal. Appl., 211 (1997), pp. 301–313.

K. Khatter, V. Ravichandran, and S. Sivaprasad Kumar, Starlike functions associated with exponential function and the lemniscate of Bernoulli, Rev. R. Acad. Cienc. Exactas F´ıs. Nat. Ser. A Mat. RACSAM, 113 (2019), pp. 233–253.

Z. a. Lewandowski, S. Miller, and E. Z l otkiewicz, Generating functions for some classes of univalent functions, Proc. Amer. Math. Soc., 56 (1976), pp. 111–117.

J.-L. Li and S. Owa, Sufficient conditions for starlikeness, Indian J. Pure Appl. Math., 33 (2002), pp. 313–318.

E. Lindelöf, M´ emoire sur certaines in´ egalit´ es dans la th´ eorie des fonctions monog` enes et sur quelques

propri´ et´ es nouvelles de ces fonctions dans le voisinage d’un point singulier essentiel, par Ernst Lindelöf..., la Soci´ et´ e de litt´ erature finnoise, 1908.

M.-S. Liu, Y.-C. Zhu, and H. M. Srivastava, Properties and characteristics of certain subclasses of starlike functions of order β, Math. Comput. Modelling, 48 (2008), pp. 402–419.

W. C. Ma and D. Minda, A unified treatment of some special classes of univalent functions, in Proceedings of the Conference on Complex Analysis (Tianjin, 1992), Conf. Proc. Lecture Notes Anal., I, Int. Press, Cambridge, MA, 1994, pp. 157–169.

R. Mendiratta, S. Nagpal, and V. Ravichandran, On a subclass of strongly starlike functions associated with exponential function, Bull. Malays. Math. Sci. Soc., 38 (2015), pp. 365–386.

S. S. Miller and P. T. Mocanu, Differential subordinations and univalent functions, Michigan Math. J., 28 (1981), pp. 157–172.

A. Naz, S. Nagpal, and V. Ravichandran, Star-likeness associated with the exponential function, Turkish J. Math., 43 (2019), pp. 1353–1371.

M. Nunokawa, On a sufficient condition for multivalently starlikeness, Tsukuba J. Math., 18 (1994), pp. 131–134.

M. Obradovi´ c and S. B. Joshi, On certain classes of strongly starlike functions, Taiwanese J. Math., 2 (1998), pp. 297–302.

K. S. Padmanabhan, On sufficient conditions for starlikeness, Indian J. Pure Appl. Math., 32 (2001), pp. 543–550.

E. Paprocki and J. Sokó l, The extremal problems in some subclass of strongly starlike functions, Zeszyty Nauk. Politech. Rzeszowskiej Mat., (1996), pp. 89–94.

C. Ramesha, S. Kumar, and K. S. Padmanabhan, A sufficient condition for starlikeness, Chinese J. Math., 23 (1995), pp. 167–171.

V. Ravichandran, Certain applications of first order differential subordination, Far East J. Math. Sci. (FJMS), 12 (2004), pp. 41–51.

V. Ravichandran, M. Hussain Khan, H. Silverman, and K. G. Subramanian, Radius problems for a class of analytic functions, Demonstratio Math., 39 (2006), pp. 67–74.

V. Ravichandran, F. Rø nning, and T. N. Shanmugam, Radius of convexity and radius of starlikeness for some classes of analytic functions, Complex Variables Theory Appl., 33 (1997), pp. 265–280.

V. Ravichandran, C. Selvaraj, and R. Rajalaksmi, Sufficient conditions for starlike functions of order α, JIPAM. J. Inequal. Pure Appl. Math., 3 (2002), pp. Article 81, 6.

M. I. S. Robertson, On the theory of univalent functions, Ann. of Math. (2), 37 (1936), pp. 374–408.

S. Ruscheweyh and T. Sheil-Small, Hadamard products of Schlicht functions and the Pólya-Schoenberg conjecture, Comment. Math. Helv., 48 (1973), pp. 119–135.

T. N. Shanmugam, Convolution and differential subordination, Internat. J. Math. Math. Sci., 12 (1989), pp. 333–340.

S. Singh and S. Gupta, A differential subordination and starlikeness of analytic functions, Appl. Math. Lett., 19 (2006), pp. 618–627.

J. Sokó land J. Stankiewicz, Radius of convexity of some subclasses of strongly starlike functions, Zeszyty Nauk. Politech. Rzeszowskiej Mat., (1996), pp. 101–105.




DOI: http://dx.doi.org/10.24193/subbmath.2023.1.12

Refbacks

  • There are currently no refbacks.