Hybrid conjugate gradient-BFGS methods based on Wolfe line search
DOI:
https://doi.org/10.24193/subbmath.2022.4.14Keywords:
Unconstrained optimization, Global convergence, Conjugate gradient methods, Quasi-Newton methods, Wolfe line search.Abstract
In this paper, we present some hybrid methods for solving unconstrained optimization problems. These methods are defined using proper combinations of the search directions and included parameters in conjugate gradient and quasi-Newton method of Broyden--Fletcher--Goldfarb--Shanno (CG-BFGS). Their global convergence under the Wolfe line search is analyzed for general objective functions. Numerical experiments show the superiority of the modified hybrid (CG-BFGS) method with respect to some existing methods.References
bibitem{BSA2017} Baluch, B., Salleh, Z., Alhawarat, A., Roslan, U.A.M., emph{A
new modified three-term conjugate gradient method with sufficient descent
property and its global convergence}, J. Math. (2017), Article ID 2715854, 12
pp.
bibitem{BN89} Byrd, R. H., Nocedal, J., emph{A tool for the analysis of
quasi-Newton methods with application to unconstrained minimization}, SIAM J.
Numer. Anal., textbf{26}(1989), no. 3, 727-739.
bibitem{DL2001} Dai, Y.H., Liao, L.Z., emph{New conjugacy conditions and related nonlinear conjugate gradient methods}, Appl. Math. Optim., textbf{43}(2001), no. 1, 87-101.
bibitem{DY2001} Dai, Y.H., Yuan, Y., emph{An efficient hybrid conjugate gradient method for unconstrained optimization}, Ann. Oper. Res., textbf{103}(2001), 33-47.
bibitem{DY99} Dai, Y.H., Yuan, Y., emph{A nonlinear conjugate gradient method
with a strong global convergence property}, SIAM J. Optim., textbf{10}(1999), no. 1, 177-182.
bibitem{F87} Fletcher, R., emph{Practical Methods of Optimization. Unconstrained Optimization}, vol. 1. Wiley New York, 1987.
bibitem{FR64} Fletcher, R., Reeves, C.M., emph{Function minimization by
conjugate gradients}, Comput. J., textbf{7}(1964), no. 2, 149-154.
bibitem{GN92} Gilbert, J.C., Nocedal, J., emph{Global convergence properties of
conjugate gradient methods for optimization}, SIAM J. Optim., textbf{2}(1992), no. 1, 21-42.
bibitem{HS52} Hestenes, M.R., Stiefel, E.L., emph{Methods of conjugate gradients for solving linear systems}, J. Res. Natl. Bur. Stand., textbf{49}(1952), no. 6, 409-436.
bibitem{I2014} Ibrahim, M.A.H., Mamat, M., Leong, W.J., emph{The hybrid BFGS-CG
method in solving unconstrained optimization problems}, In: Abstract and
Applied Analysis (2014). Hindawi Publishing Corporation. Article ID 507102, 6
pp.
bibitem{KH2017} Khanaiah, Z., Hmod, G., emph{Novel hybrid algorithm in solving
unconstrained optimizations problems}, Int. J. Novel Res. Phys. Chem. Math.,
textbf{4}(2017), no. 3, 36-42.
bibitem{LS91} Liu, Y., Storey, C., emph{Efficient generalized conjugate gradient
algorithms, part 1: theory}, J. Optim. Theory Appl., textbf{69}(1991), no. 1, 129-137.
bibitem{OI2017} Osman, W.F.H.W., Ibrahim, M.A.H., Mamat, M., emph{Hybrid DFP-CG
method for solving unconstrained optimization problems}, J. Phys. Conf. Ser.
(2017), 012033.
bibitem{PR69} Polak, E., Ribiere, G., emph{Note sur la convergence des m'ethodes
de directions conjugu'{e}es}, Rev. Franc {c}aise d'Informatique et de Recherche Op'erationnelle
textbf{3}(1969), no. R1, 35-43.
bibitem{P69} Polyak, B.T., emph{The conjugate gradient method in extreme
problems}, U.S.S.R. Comput. Math. Phys., textbf{9}(1969), 94-112.
bibitem{SB2018} Stanimirovi'{c}, P. S., Ivanov, B., Djordjevi'{c}, S.,
Brajevi'{c}, I., emph{New Hybrid Conjugate Gradient and
Broyden--Fletcher--Goldfarb--Shanno Conjugate Gradient Methods}, J.
Optim. Theory Appl., textbf{178}(2018), no. 3, 860-884.
bibitem{T90} Touati-Ahmed, D., Storey, C., emph{Efficient hybrid conjugate
gradient techniques}, J. Optim. Theory Appl., textbf{64}(1990), no. 2, 379-397.
bibitem{Z2006} Zhang, L., emph{Nonlinear Conjugate Gradient Methods for
Optimization Problems}, Ph.D. Thesis, College of Mathematics and
Econometrics, Hunan University, Changsha China, 2006.
bibitem{ZZ2008} Zhang, L., Zhou, W., emph{Two descent hybrid conjugate gradient
methods for optimization}, J. Comput. Appl. Math., textbf{216}(2008), 251-264.
bibitem{ZZ2006} Zhang, L., Zhou, W.J., Li, D.H., emph{Global convergence of a
modified Fletcher--Reeves conjugate method with Armijo-type line search},
Numer. Math., textbf{104}(2006), 561-572.
bibitem{ZH17} Zheng, Y., Zheng, B., emph{Two new Dai-Liao-type conjugate
gradient methods for unconstrained optimization problems}, J. Optim. Theory
Appl., textbf{175}(2017), 502-509.
bibitem{ZT70} Zoutendijk, G., emph{Nonlinear programming, computational methods}, In: Abadie, J. (ed.) Integer and Nonlinear Programming, (1970), 37-86.
bibitem{YL2013} Yang, X., Luo, Z., Dai, X., emph{A global convergence of LS-CD
hybrid conjugate gradient method}, In:Advances in Numerical Analysis (2013).
Hindawi Publishing Corporation, Article ID 517452, 5 pp.