Hybrid conjugate gradient-BFGS methods based on Wolfe line search
Abstract
Keywords
Full Text:
PDFReferences
bibitem{BSA2017} Baluch, B., Salleh, Z., Alhawarat, A., Roslan, U.A.M., emph{A
new modified three-term conjugate gradient method with sufficient descent
property and its global convergence}, J. Math. (2017), Article ID 2715854, 12
pp.
bibitem{BN89} Byrd, R. H., Nocedal, J., emph{A tool for the analysis of
quasi-Newton methods with application to unconstrained minimization}, SIAM J.
Numer. Anal., textbf{26}(1989), no. 3, 727-739.
bibitem{DL2001} Dai, Y.H., Liao, L.Z., emph{New conjugacy conditions and related nonlinear conjugate gradient methods}, Appl. Math. Optim., textbf{43}(2001), no. 1, 87-101.
bibitem{DY2001} Dai, Y.H., Yuan, Y., emph{An efficient hybrid conjugate gradient method for unconstrained optimization}, Ann. Oper. Res., textbf{103}(2001), 33-47.
bibitem{DY99} Dai, Y.H., Yuan, Y., emph{A nonlinear conjugate gradient method
with a strong global convergence property}, SIAM J. Optim., textbf{10}(1999), no. 1, 177-182.
bibitem{F87} Fletcher, R., emph{Practical Methods of Optimization. Unconstrained Optimization}, vol. 1. Wiley New York, 1987.
bibitem{FR64} Fletcher, R., Reeves, C.M., emph{Function minimization by
conjugate gradients}, Comput. J., textbf{7}(1964), no. 2, 149-154.
bibitem{GN92} Gilbert, J.C., Nocedal, J., emph{Global convergence properties of
conjugate gradient methods for optimization}, SIAM J. Optim., textbf{2}(1992), no. 1, 21-42.
bibitem{HS52} Hestenes, M.R., Stiefel, E.L., emph{Methods of conjugate gradients for solving linear systems}, J. Res. Natl. Bur. Stand., textbf{49}(1952), no. 6, 409-436.
bibitem{I2014} Ibrahim, M.A.H., Mamat, M., Leong, W.J., emph{The hybrid BFGS-CG
method in solving unconstrained optimization problems}, In: Abstract and
Applied Analysis (2014). Hindawi Publishing Corporation. Article ID 507102, 6
pp.
bibitem{KH2017} Khanaiah, Z., Hmod, G., emph{Novel hybrid algorithm in solving
unconstrained optimizations problems}, Int. J. Novel Res. Phys. Chem. Math.,
textbf{4}(2017), no. 3, 36-42.
bibitem{LS91} Liu, Y., Storey, C., emph{Efficient generalized conjugate gradient
algorithms, part 1: theory}, J. Optim. Theory Appl., textbf{69}(1991), no. 1, 129-137.
bibitem{OI2017} Osman, W.F.H.W., Ibrahim, M.A.H., Mamat, M., emph{Hybrid DFP-CG
method for solving unconstrained optimization problems}, J. Phys. Conf. Ser.
(2017), 012033.
bibitem{PR69} Polak, E., Ribiere, G., emph{Note sur la convergence des m'ethodes
de directions conjugu'{e}es}, Rev. Franc {c}aise d'Informatique et de Recherche Op'erationnelle
textbf{3}(1969), no. R1, 35-43.
bibitem{P69} Polyak, B.T., emph{The conjugate gradient method in extreme
problems}, U.S.S.R. Comput. Math. Phys., textbf{9}(1969), 94-112.
bibitem{SB2018} Stanimirovi'{c}, P. S., Ivanov, B., Djordjevi'{c}, S.,
Brajevi'{c}, I., emph{New Hybrid Conjugate Gradient and
Broyden--Fletcher--Goldfarb--Shanno Conjugate Gradient Methods}, J.
Optim. Theory Appl., textbf{178}(2018), no. 3, 860-884.
bibitem{T90} Touati-Ahmed, D., Storey, C., emph{Efficient hybrid conjugate
gradient techniques}, J. Optim. Theory Appl., textbf{64}(1990), no. 2, 379-397.
bibitem{Z2006} Zhang, L., emph{Nonlinear Conjugate Gradient Methods for
Optimization Problems}, Ph.D. Thesis, College of Mathematics and
Econometrics, Hunan University, Changsha China, 2006.
bibitem{ZZ2008} Zhang, L., Zhou, W., emph{Two descent hybrid conjugate gradient
methods for optimization}, J. Comput. Appl. Math., textbf{216}(2008), 251-264.
bibitem{ZZ2006} Zhang, L., Zhou, W.J., Li, D.H., emph{Global convergence of a
modified Fletcher--Reeves conjugate method with Armijo-type line search},
Numer. Math., textbf{104}(2006), 561-572.
bibitem{ZH17} Zheng, Y., Zheng, B., emph{Two new Dai-Liao-type conjugate
gradient methods for unconstrained optimization problems}, J. Optim. Theory
Appl., textbf{175}(2017), 502-509.
bibitem{ZT70} Zoutendijk, G., emph{Nonlinear programming, computational methods}, In: Abadie, J. (ed.) Integer and Nonlinear Programming, (1970), 37-86.
bibitem{YL2013} Yang, X., Luo, Z., Dai, X., emph{A global convergence of LS-CD
hybrid conjugate gradient method}, In:Advances in Numerical Analysis (2013).
Hindawi Publishing Corporation, Article ID 517452, 5 pp.
DOI: http://dx.doi.org/10.24193/subbmath.2022.4.14
Refbacks
- There are currently no refbacks.