Coefficient estimates for a subclass of analytic functions by Srivastava-Attiya operator
Abstract
In this paper, we investigate bounds of the coefficients for subclass
of analytic and bi-univalent functions. The results presented in
this paper would generalize and improve some recent works and other
authors.
Keywords
Full Text:
PDFReferences
bibitem{A} Ali, R. M., Lee, S. K., Ravichandran V., Subramaniam, S., emph{Coefficient estimates for bi-univalent Ma-Minda starlike and convex functions}, Appl. Math. Lett., textbf{25} (2012), 344-351.
bibitem{Adegani et al} Adegani, E. A., Cho, N. E., Motamednezhad, A., Jafari, M., emph{Bi-univalent functions associated with Wright hypergeometric functions}, J. Comput. Anal. Appl., textbf{28} ( 2020), 261-271.
bibitem{ABZ} Adegani, E. A., Bulut, S., Zireh, A., emph{Coefficient estimates for a subclass of analytic bi-univalent functions}, Bull. Korean Math. Soc., textbf{55} (2018), 405-413.
bibitem{Aou} Aouf, M. K., El-Ashwah, R. M., Abd-Eltawab, A. M., emph{New subclasses of biunivalent functions involving Dziok-Srivastava operator}, ISRN Math. Anal., (2013), Art. ID 387178.
bibitem{Bra} Brannan, D. A., Taha, T. S., emph{On some classes of bi-univalent functions}, Studia Univ. Babec{s}-Bolyai Math., textbf{31} (1986), 70-77.
bibitem{Bu1} Bulut, S., emph{Coefficient estimates for a new subclass of analytic and bi-univalent functions defined by Hadamard product},
J. Complex Anal., (2014), Art. ID 302019.
bibitem{Ca} c{C}au{g}lar, M., Orhan, H., Yau{g}mur, N., emph{Coefficient bounds for new subclasses of bi-univalent functions}, Filomat, textbf{27} (2013), 1165-1171.
bibitem{De} Deniz, E., emph{Certain subclasses of bi-univalent functions satisfying subordinate conditions}, J. Classical Anal., textbf{2} (2013), 49-60.
bibitem{Du} Duren, P. L., emph{Univalent Functions}, Grundlehren der Mathematischen Wissenschaften, Band 259, Springer-Verlag, New York, Berlin, Heidelberg and Tokyo, 1983.
bibitem{MB} Murugusundaramoorthy, G., Bulboacu{a}, T., emph{Estimate for initial MacLaurin coefficients of certain subclasses of bi-univalent functions of complex order associated with the Hohlov operator}, Ann. Univ. Paedagog. Crac. Stud. Math., textbf{17} (2018), no. 1, 27-36.
bibitem{Fr} Frasin, B. A., Aouf, M. K., emph{New subclasses of bi-univalent functions}, Appl. Math. Lett., textbf{24} (2011), 1569-1573.
bibitem{Jafari et al} Jafari, M., Bulboaca, T., Zireh, A., Adegani, E. A., emph{Simple criteria for univalence and coefficient bounds for a certain subclass of analytic functions}, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., textbf{69}, (2019), no. 1, 394-412.
bibitem{JKS} Jung, I. B., Kim, Y. C., Srivastava, H. M., emph{The Hardy space of analytic functions associated with certain one-parameter families of integral operators}, J. Math. Anal. Appl., textbf{176} (1993), 138-147.
bibitem{Motamednezhad et al} Motamednezhad, A., Bulboacu{a}, T., Adegani, E. A., Dibagar, N., emph{Second Hankel determinant for a subclass of analytic bi-univalent functions defined by subordination}, Turk. J. Math., textbf{42} (2018), 2798-2808.
bibitem{Neh} Nehari, Z., emph{Conformal Mapping}, McGraw-Hill, New York, NY, USA, 1952.
bibitem{Le} Lewin, M., emph{On a coefficient problem for bi-univalent functions}, Proc. Amer. Math. Soc., textbf{18} (1967), 63-68.
bibitem{PG} Prajapat, J. K., Goyal, S. P., emph{Applications of Srivastava-Attiya operator to the classes of strongly starlike and strongly convex functions}, J. Math. Inequal., textbf{3} (2009), 129-137.
bibitem{RS} Rv{a}ducanu, D., Srivastava, H. M., emph{A new class of analytic functions defined by means of a convolution operator involving the Hurwitz-Lerch Zeta function}, Integr. Transf. Spec. funct., textbf{18} (2007), 933-943.
bibitem{RP} Reddy, G. L., Padmanaban, K. S., emph{On analytic functions with reference to the Bernardi integral operator}, Bull. Austral. Math. Soc., textbf{25} (1982), 387-396.
bibitem{Sel} Selvaraj, C., Babu, O. S., Murugusundaramoorthy, G., emph{Coefficient estimates of bi-Bazileviv{c} functions of Sakaguchi
type based on Srivastava-Attiya operator}, FU Math. Inform., textbf{29} (2014), no. 1, 105-117.
bibitem{Sr} Srivastava, H. M., Mishra, A. K., Gochhayat, P., emph{Certain subclasses of analytic and biunivalent functions}, Appl. Math. Lett., textbf{23} (2010), 1188-1192.
bibitem{SA} Srivastava, H. M., Attiya, A., emph{An integral operator associated with the Hurwitz-Lerch Zeta function and differential subordination},
Integr. Transf. Spec. funct., textbf{18} (2007), 207-216.
bibitem{Zi} Zireh, A., Adegani, E. A., Bidkham, M., emph{Faber Polynomial Coefficient
Estimates for Subclass of Bi-univalent Functions Defined by Quasisubordinate}, Math. Slovaca, textbf{68} (2018), 369-378.
bibitem{Zi1} Zireh, A., Adegani, E. A., Bulut, S., emph{Faber polynomial coefficient estimates for a comprehensive subclass of analytic bi-univalent functions defined by subordination}, Bull. Belg. Math. Soc. Simon Stevin, textbf{23} (2016), 487-504.
DOI: http://dx.doi.org/10.24193/subbmath.2022.4.06
Refbacks
- There are currently no refbacks.