A modified Post Widder operators preserving e Ax
Abstract
Full Text:
PDFReferences
bibitem{oa1} O. Agratini, A sequence of positive linear operators associated with an approximation process, Appl. Math. Comput. 269 (2015), 23--28.
bibitem{oa2} O. Agratini, On an approximation process of integral type,
Appl. Math. Comput. 236 (2014), 195--201.
bibitem{oa} O. Agratini, A. Aral, E. Deniz, On two classes of approximation processes of integral type, Positivity 21 (3)(2017), 1189--1199.
bibitem{acar} T. Acar, A. Aral, D. C.-Morales and P. Garrancho, Sz'asz-Mirakyan operators which fix exponentials, Results Math. 72(2)(2017).
bibitem {ZD} Z. Ditzian, On global inverse theorems of Sz'asz and Baskakov operators, 31(2) (1979), 255-263.
bibitem{vgda} V. Gupta and D. Agrawal, Convergence by modified Post-Widder operators, Rev. R. Acad. Cienc. Exactas F'is. Nat. Ser. A Mat. RACSAM 113(2)(2019), 1475--1486.
bibitem{vgvks} V. Gupta and V. K. Singh, Modified Post-Widder operators preserving exponential functions, Avanes in Mathematical Methods and High Performance Computing, Advances in Mechanics and Mathematics 41, Editors V. K. Singh et al. Springer Nature Switzerland (2019), 181--192.
bibitem{vggt} V. Gupta and G. Tachev, Approximation with Positive Linear Operators
and Linear Combinations, Series: Developments in Mathematics, Vol.
Springer, 2017.
bibitem{vg-kjm} V. Gupta and G. Tachev, Some results on Post-Widder operators preserving test function $x^r$, Kragujevac J. Math. 46(1)(2022), 149-165.
bibitem{vgpm} V. Gupta and P. Maheshwari, Approximation with certain Post Widder operators, Publ. Inst Math 105 (119)(2019), 1-6.
bibitem{vgmtr} V. Gupta and M. T. Rassias, Moments of Linear Positive Operators and Approximation, Series: SpringerBriefs in Mathematics, Springer Nature Switzerland AG (2019).
bibitem{GTVGAA} G. Tachev, V. Gupta and A. Aral, Voronovskja's theorem for functions with exponential growth, Georgian Math. J. DOI: https://doi.org/10.1515/gmj-2018-0041
bibitem{widder} D. V. Widder, The Laplace Transform, Princeton Mathematical Series, Princeton University Press, Princeton, N.J., 1941.
DOI: http://dx.doi.org/10.24193/subbmath.2022.3.11
Refbacks
- There are currently no refbacks.