A strong converse inequality for the iterated Boolean sums of the Bernstein operator
Abstract
Keywords
Full Text:
PDFReferences
bibitem{Ch-Zh}
Cheng, L., Zhou, X., emph{Strong inequalities for the iterated Boolean sums of Bernstein operators}, Stud. Univ. Babec s-Bolyai Math., textbf{64}(2019), no.~3, 299-304.
bibitem{De-Lo:CA}
DeVore, R. A., Lorentz, G. G., emph{Constructive Approximation}, Springer-Verlag, Berlin, 1993.
bibitem{Di-Ca}
Ding, C., Cao, F., emph{$K$-functionals and multivariate Bernstein polynomials}, J. Approx. Theory, textbf{155}(2008), 125-135.
bibitem{Di-Iv}
Ditzian, Z., Ivanov, K. G., emph{Strong converse inequalities}, J. Anal. Math., textbf{61}(1993), 61-111.
bibitem{Di-To:Mod}
Ditzian, Z., Totik, V., emph{Moduli of Smoothness}, Springer-Verlag, New York, 1987.
bibitem{Dr:BernIt2}
Draganov, B. R., emph{On Simultaneous Approximation by Iterated Boolean Sums of Bernstein Operators}, Results Math., textbf{66}(2014), 21-41.
bibitem{Dr:BernIt3}
Draganov, B. R., emph{Strong estimates of the weighted simultaneous approximation by the Bernstein and Kantorovich operators and their iterated Boolean sums}, J. Approx. Theory, textbf{200}(2015), 92-135.
bibitem{Dr-Ga}
Draganov, B. R., Gadjev, I., emph{Direct and converse Voronovskaya estimates for the Bernstein operator}, Results Math., textbf{73}:11(2018).
bibitem{Go-Zh}
Gonska, H., Zhou, X.-l., emph{Approximation theorems for the iterated Boolean sums of Bernstein operators}, J. Comput. Appl. Math., textbf{53}(1994), 21-31.
bibitem{Kn-Zh}
Knoop, H.-B., Zhou, X.-l., emph{The lower estimate for linear positive operators (II)}, Results Math., textbf{25}(1994), 315-330.
bibitem{Ko-Le-Sh}
Kopotun, K., Leviatan, D., Shevchuk, I. A., emph{New moduli of smoothness: weighted DT moduli revisited and applied}, Constr. Approx., textbf{42}(2015), 129-159.
bibitem{To:BP}
Totik, V., emph{Approximation by Bernstein polynomials}, Amer. J. Math., textbf{116}(1994), 995-1018.
DOI: http://dx.doi.org/10.24193/subbmath.2022.3.10
Refbacks
- There are currently no refbacks.