Salagean-type harmonic multivalent functions defined by $q-$difference operator

Authors

  • Om P. Ahuja Kent State University
  • Asena Cetinkaya Istanbul Kültür Universsity
  • Oya Mert İstanbul Altınbaş University

DOI:

https://doi.org/10.24193/subbmath.2022.3.03

Keywords:

$q-$calculus, $q-$difference operator, Salagean differential operator, multivalent function

Abstract

We introduce a new subclass of  Salagean-type harmonic multivalent functions by using  $q-$difference operator. We investigate sufficient coefficient estimates, distortion bounds, extreme points, convolution properties  and neighborhood for the functions belonging to this function class.

References

Ahuja, Om P. and Jahangiri, J. M., Multivalent harmonic starlike functions, Ann. Univ. Marie Curie-Sklodowska, Sect. A, 55(2001), no. 1, 1-13.

Ahuja, Om P. and c{C}etinkaya, A., Use of Quantum Calculus Approach In Mathematical Sciences and Its Role In Geometric Function Theory, National Conference on Mathematical Analysis and Computing 2018, AIP Conference Proceedings 2095, 020001 (2019); https://doi.org/10.1063/1.5097511.

Clunie, J. and Sheil-Small, T., Harmonic univalent functions, Ann. Acad. Sci. Fenn. Ser. A. I. Math., 9(1984), 3-25.

Duren, P.L., Hengartner, W. and Laugesen, R. S., The argument principles harmonic functions, Amer. Math. Monthly, 103(1996), no. 5, 411-425.

Gasper, G. and Rahman, M., Basic hypergeometric series, Cambridge University Press, 2004.

G"{u}ney, H. "{O}. and Ahuja, O. P., Inequalities involving multipliers for multivalent harmonic functions, J. Inequal. Pure Appl. Math., 7(2006), no. 5, Art. 190, 1-9.

Jackson, F. H., On $q-$functions and a certain difference operator, Trans. Royal Soc. Edinburgh, 46(1909), 253-281.

Jackson, F. H., $q-$difference equations, Amer. J. Math., 32(1910), 305-314.

Jahangiri, J. M., Murugusundaramoorthy, G. and Vijaya, K., Salagean- Type harmonic univalent functions, Southwest J. Pure Appl. Math., 2(2002), 77-82.

Jahangiri, J. M., Harmonic functions starlike in the unit disc, J. Math. Anal. Appl. 235 (1999) 470-477.

Jahangiri, J. M., c{S}eker, B. and Eker, S. S., Salagean-type harmonic multivalent functions, Acta Universitatis Apulensis, 18(2009), 233-244.

Salagean, G. S., Subclasses of univalent functions, In: Complex Analysis, Fifth Romanian Finnish Seminar, Part I (Bucharest, 1981), Lecture Notes in Math., 1013, Springer, Berlin, (1983), 362-372.

Vijaya, K., Studies on certain subclasses of harmonic functions, Ph.D Thesis, VIT University, Vellore, 2014.

Downloads

Published

2022-09-22

Issue

Section

Articles