Salagean-type harmonic multivalent functions defined by $q-$difference operator
DOI:
https://doi.org/10.24193/subbmath.2022.3.03Keywords:
$q-$calculus, $q-$difference operator, Salagean differential operator, multivalent functionAbstract
We introduce a new subclass of Salagean-type harmonic multivalent functions by using $q-$difference operator. We investigate sufficient coefficient estimates, distortion bounds, extreme points, convolution properties and neighborhood for the functions belonging to this function class.References
Ahuja, Om P. and Jahangiri, J. M., Multivalent harmonic starlike functions, Ann. Univ. Marie Curie-Sklodowska, Sect. A, 55(2001), no. 1, 1-13.
Ahuja, Om P. and c{C}etinkaya, A., Use of Quantum Calculus Approach In Mathematical Sciences and Its Role In Geometric Function Theory, National Conference on Mathematical Analysis and Computing 2018, AIP Conference Proceedings 2095, 020001 (2019); https://doi.org/10.1063/1.5097511.
Clunie, J. and Sheil-Small, T., Harmonic univalent functions, Ann. Acad. Sci. Fenn. Ser. A. I. Math., 9(1984), 3-25.
Duren, P.L., Hengartner, W. and Laugesen, R. S., The argument principles harmonic functions, Amer. Math. Monthly, 103(1996), no. 5, 411-425.
Gasper, G. and Rahman, M., Basic hypergeometric series, Cambridge University Press, 2004.
G"{u}ney, H. "{O}. and Ahuja, O. P., Inequalities involving multipliers for multivalent harmonic functions, J. Inequal. Pure Appl. Math., 7(2006), no. 5, Art. 190, 1-9.
Jackson, F. H., On $q-$functions and a certain difference operator, Trans. Royal Soc. Edinburgh, 46(1909), 253-281.
Jackson, F. H., $q-$difference equations, Amer. J. Math., 32(1910), 305-314.
Jahangiri, J. M., Murugusundaramoorthy, G. and Vijaya, K., Salagean- Type harmonic univalent functions, Southwest J. Pure Appl. Math., 2(2002), 77-82.
Jahangiri, J. M., Harmonic functions starlike in the unit disc, J. Math. Anal. Appl. 235 (1999) 470-477.
Jahangiri, J. M., c{S}eker, B. and Eker, S. S., Salagean-type harmonic multivalent functions, Acta Universitatis Apulensis, 18(2009), 233-244.
Salagean, G. S., Subclasses of univalent functions, In: Complex Analysis, Fifth Romanian Finnish Seminar, Part I (Bucharest, 1981), Lecture Notes in Math., 1013, Springer, Berlin, (1983), 362-372.
Vijaya, K., Studies on certain subclasses of harmonic functions, Ph.D Thesis, VIT University, Vellore, 2014.
Downloads
Published
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Transfer of copyright agreement: When the article is accepted for publication, the authors and the representative of the coauthors, hereby agree to transfer to Studia Universitatis Babeș-Bolyai Mathematica all rights, including those pertaining to electronic forms and transmissions, under existing copyright laws, except for the following, which the authors specifically retain: the authors can use the material however they want as long as it fits the NC ND terms of the license. The authors have all rights for reuse according to the license.