Salagean-type harmonic multivalent functions defined by $q-$difference operator

Om P. Ahuja, Asena Cetinkaya, Oya Mert

Abstract


We introduce a new subclass of  Salagean-type harmonic multivalent functions by using  $q-$difference operator. We investigate sufficient coefficient estimates, distortion bounds, extreme points, convolution properties  and neighborhood for the functions belonging to this function class.

Keywords


$q-$calculus, $q-$difference operator, Salagean differential operator, multivalent function

Full Text:

PDF

References


Ahuja, Om P. and Jahangiri, J. M., Multivalent harmonic starlike functions, Ann. Univ. Marie Curie-Sklodowska, Sect. A, 55(2001), no. 1, 1-13.

Ahuja, Om P. and c{C}etinkaya, A., Use of Quantum Calculus Approach In Mathematical Sciences and Its Role In Geometric Function Theory, National Conference on Mathematical Analysis and Computing 2018, AIP Conference Proceedings 2095, 020001 (2019); https://doi.org/10.1063/1.5097511.

Clunie, J. and Sheil-Small, T., Harmonic univalent functions, Ann. Acad. Sci. Fenn. Ser. A. I. Math., 9(1984), 3-25.

Duren, P.L., Hengartner, W. and Laugesen, R. S., The argument principles harmonic functions, Amer. Math. Monthly, 103(1996), no. 5, 411-425.

Gasper, G. and Rahman, M., Basic hypergeometric series, Cambridge University Press, 2004.

G"{u}ney, H. "{O}. and Ahuja, O. P., Inequalities involving multipliers for multivalent harmonic functions, J. Inequal. Pure Appl. Math., 7(2006), no. 5, Art. 190, 1-9.

Jackson, F. H., On $q-$functions and a certain difference operator, Trans. Royal Soc. Edinburgh, 46(1909), 253-281.

Jackson, F. H., $q-$difference equations, Amer. J. Math., 32(1910), 305-314.

Jahangiri, J. M., Murugusundaramoorthy, G. and Vijaya, K., Salagean- Type harmonic univalent functions, Southwest J. Pure Appl. Math., 2(2002), 77-82.

Jahangiri, J. M., Harmonic functions starlike in the unit disc, J. Math. Anal. Appl. 235 (1999) 470-477.

Jahangiri, J. M., c{S}eker, B. and Eker, S. S., Salagean-type harmonic multivalent functions, Acta Universitatis Apulensis, 18(2009), 233-244.

Salagean, G. S., Subclasses of univalent functions, In: Complex Analysis, Fifth Romanian Finnish Seminar, Part I (Bucharest, 1981), Lecture Notes in Math., 1013, Springer, Berlin, (1983), 362-372.

Vijaya, K., Studies on certain subclasses of harmonic functions, Ph.D Thesis, VIT University, Vellore, 2014.




DOI: http://dx.doi.org/10.24193/subbmath.2022.3.03

Refbacks

  • There are currently no refbacks.