Triangle angle sums related to translation curves in $\SOL$ geometry
DOI:
https://doi.org/10.24193/subbmath.2022.3.14Keywords:
Thurston geometries, $\SOL$ geometry, translation and geodesic triangles, interior angle sumAbstract
After having investigated the geodesic and translation triangles and their angle sums in $\NIL$ and $\SLR$ geometries we consider the analogous problem in $\SOL$ space thatis one of the eight 3-dimensional Thurston geometries.
We analyse the interior angle sums of translation triangles in $\SOL$ geometry
and prove that it can be larger or equal than $\pi$.
In our work we will use the projective model of $\SOL$ described by E. Moln\'ar in \cite{M97}.
References
bibitem{B}
{Brodaczewska,~K.,}
Elementargeometrie in $NIL$.
textit{Dissertation (Dr. rer. nat.) Fakult"at Mathematik und Naturwissenschaften der Technischen Universit"at Dresden}
(2014).
%
bibitem{Ch}
Chavel,~I.,
{it Riemannian Geometry: A Modern Introduction}.
Cambridge Studies in Advances Mathematics, (2006).
%
bibitem{CsSz16}
Csima,~G.~--~Szirmai,~J.,
Interior angle sum of translation and geodesic triangles in $SLR$ space.
{it Filomat}, {bf 32/14}, 5023--5036, (2018).
%
bibitem{KN}
Kobayashi,~S.~--~Nomizu,~K.,
{it Fundation of differential geometry, I.}. Interscience, Wiley, New York (1963).
%
bibitem{Mi}
Milnor,~J.,
Curvatures of left Invariant metrics on Lie groups.
{it Advances in Math.,} {bf 21}, 293--329 (1976).
%
bibitem{M97}
Moln{'a}r,~E.,
The projective interpretation of the eight 3-di-men-sional homogeneous geometries.
{it Beitr. Algebra Geom.,} {bf 38}(2), 261--288 (1997).
%
bibitem{CaMoSpSz}
{Cavichioli,~A.~--~Moln'ar,~E.~--~Spaggiari,~F.~--~Szirmai,~J.,}
Some tetrahedron manifolds with $SOL$ geometry.
textit{J. Geom.,} {bf 105/3}, 601-614 (2014).
%
bibitem{KV}
{Kotowski,~M.~--~Vir'ag,~B.,}
Dyson's spike for random Schroedinger operators and Novikov-Shubin invariants of groups.
textit{Manuscript (2016)} arXiv:1602.06626.
%
%
bibitem{M97}
{Moln{'a}r,~E.,}
The projective interpretation of the eight 3-di-men-sional homogeneous geometries.
emph{Beitr. Algebra Geom.,}
{bf38} No.~2, 261--288, (1997).
%
bibitem{MoSzi10}
{Moln{'a}r,~E.~--~Szil'agyi,~B.,}
Translation curves and their spheres in homogeneous geometries.
textit{Publ. Math. Debrecen,}
{bf 78/2}, 327-346 (2010).
%
bibitem{MSz}
{Moln{'a}r,~E.~--~Szirmai,~J.,}
Symmetries in the 8 homogeneous 3-geometries.
textit{Symmetry Cult. Sci.,}
{bf 21/1-3}, 87-117 (2010).
%
bibitem{MSz12}
{Moln{'a}r,~E.~--~Szirmai,~J.,}
Classification of $SOL$ lattices.
textit{Geom. Dedicata,}
{bf 161/1}, 251-275 (2012).
%
bibitem{MSzV}
Moln{'a}r,~E.~--~Szirmai,~J.~--~Vesnin,~A.,
Projective metric realizations of cone-manifolds with singularities along 2-bridge knots and links.
{it J. Geom.,} {bf 95}, 91-133 (2009).
%
bibitem{MSzV14}
Moln{'a}r,~E.~--~Szirmai,~J.~--~Vesnin,~A.,
Packings by translation balls in $SLR$.
{it J. Geom.,} {bf 105}(2), 287--306 (2014)
%
bibitem{S}
Scott,~P.,
The geometries of 3-manifolds. {it Bull. London Math. Soc.} {bf 15}, 401--487 (1983).
%
bibitem{Sz13-1}
Szirmai,~J.,
A candidate to the densest packing with equal balls in the Thurston geometries.
{it Beitr. Algebra Geom.,} {bf 55}(2), 441--452 (2014).
%
bibitem{Sz18}
Szirmai,~J.,
Bisector surfaces and circumscribed spheres of tetrahedra derived
by translation curves in $SOL$ geometry.
{it New York J. Math.,} {bf 25}, 107--122 (2019).
%
bibitem{Sz13-2}
Szirmai,~J.,
The densest translation ball packing by fundamental lattices in $SOL$ space.
{it Beitr. Algebra Geom.,} {bf 51}(2) 353--373 (2010).
%
bibitem{Sz16}
Szirmai,~J.,
$NIL$ geodesic triangles and their interior angle sums.
{it Bull. Braz. Math. Soc. (N.S.),} {bf 49} 761--773 (2018), DOI: 10.1007/s00574-018-0077-9.
%
bibitem{T}
Thurston,~W.~P. (and Levy,~S. editor),
{it Three-Dimensional Geometry and Topology}. Princeton University Press, Princeton, New Jersey, vol. {bf 1} (1997).
%
Downloads
Published
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Transfer of copyright agreement: When the article is accepted for publication, the authors and the representative of the coauthors, hereby agree to transfer to Studia Universitatis Babeș-Bolyai Mathematica all rights, including those pertaining to electronic forms and transmissions, under existing copyright laws, except for the following, which the authors specifically retain: the authors can use the material however they want as long as it fits the NC ND terms of the license. The authors have all rights for reuse according to the license.