Triangle angle sums related to translation curves in $\SOL$ geometry

Jenő Szirmai

Abstract


After having investigated the geodesic and translation triangles and their angle sums in $\NIL$ and $\SLR$ geometries we consider the analogous problem in $\SOL$ space that
is one of the eight 3-dimensional Thurston geometries.

We analyse the interior angle sums of translation triangles in $\SOL$ geometry
and prove that it can be larger or equal than $\pi$.

In our work we will use the projective model of $\SOL$ described by E. Moln\'ar in \cite{M97}.

Keywords


Thurston geometries, $\SOL$ geometry, translation and geodesic triangles, interior angle sum

Full Text:

PDF

References


bibitem{B}

{Brodaczewska,~K.,}

Elementargeometrie in $NIL$.

textit{Dissertation (Dr. rer. nat.) Fakult"at Mathematik und Naturwissenschaften der Technischen Universit"at Dresden}

(2014).

%

bibitem{Ch}

Chavel,~I.,

{it Riemannian Geometry: A Modern Introduction}.

Cambridge Studies in Advances Mathematics, (2006).

%

bibitem{CsSz16}

Csima,~G.~--~Szirmai,~J.,

Interior angle sum of translation and geodesic triangles in $SLR$ space.

{it Filomat}, {bf 32/14}, 5023--5036, (2018).

%

bibitem{KN}

Kobayashi,~S.~--~Nomizu,~K.,

{it Fundation of differential geometry, I.}. Interscience, Wiley, New York (1963).

%

bibitem{Mi}

Milnor,~J.,

Curvatures of left Invariant metrics on Lie groups.

{it Advances in Math.,} {bf 21}, 293--329 (1976).

%

bibitem{M97}

Moln{'a}r,~E.,

The projective interpretation of the eight 3-di-men-sional homogeneous geometries.

{it Beitr. Algebra Geom.,} {bf 38}(2), 261--288 (1997).

%

bibitem{CaMoSpSz}

{Cavichioli,~A.~--~Moln'ar,~E.~--~Spaggiari,~F.~--~Szirmai,~J.,}

Some tetrahedron manifolds with $SOL$ geometry.

textit{J. Geom.,} {bf 105/3}, 601-614 (2014).

%

bibitem{KV}

{Kotowski,~M.~--~Vir'ag,~B.,}

Dyson's spike for random Schroedinger operators and Novikov-Shubin invariants of groups.

textit{Manuscript (2016)} arXiv:1602.06626.

%

%

bibitem{M97}

{Moln{'a}r,~E.,}

The projective interpretation of the eight 3-di-men-sional homogeneous geometries.

emph{Beitr. Algebra Geom.,}

{bf38} No.~2, 261--288, (1997).

%

bibitem{MoSzi10}

{Moln{'a}r,~E.~--~Szil'agyi,~B.,}

Translation curves and their spheres in homogeneous geometries.

textit{Publ. Math. Debrecen,}

{bf 78/2}, 327-346 (2010).

%

bibitem{MSz}

{Moln{'a}r,~E.~--~Szirmai,~J.,}

Symmetries in the 8 homogeneous 3-geometries.

textit{Symmetry Cult. Sci.,}

{bf 21/1-3}, 87-117 (2010).

%

bibitem{MSz12}

{Moln{'a}r,~E.~--~Szirmai,~J.,}

Classification of $SOL$ lattices.

textit{Geom. Dedicata,}

{bf 161/1}, 251-275 (2012).

%

bibitem{MSzV}

Moln{'a}r,~E.~--~Szirmai,~J.~--~Vesnin,~A.,

Projective metric realizations of cone-manifolds with singularities along 2-bridge knots and links.

{it J. Geom.,} {bf 95}, 91-133 (2009).

%

bibitem{MSzV14}

Moln{'a}r,~E.~--~Szirmai,~J.~--~Vesnin,~A.,

Packings by translation balls in $SLR$.

{it J. Geom.,} {bf 105}(2), 287--306 (2014)

%

bibitem{S}

Scott,~P.,

The geometries of 3-manifolds. {it Bull. London Math. Soc.} {bf 15}, 401--487 (1983).

%

bibitem{Sz13-1}

Szirmai,~J.,

A candidate to the densest packing with equal balls in the Thurston geometries.

{it Beitr. Algebra Geom.,} {bf 55}(2), 441--452 (2014).

%

bibitem{Sz18}

Szirmai,~J.,

Bisector surfaces and circumscribed spheres of tetrahedra derived

by translation curves in $SOL$ geometry.

{it New York J. Math.,} {bf 25}, 107--122 (2019).

%

bibitem{Sz13-2}

Szirmai,~J.,

The densest translation ball packing by fundamental lattices in $SOL$ space.

{it Beitr. Algebra Geom.,} {bf 51}(2) 353--373 (2010).

%

bibitem{Sz16}

Szirmai,~J.,

$NIL$ geodesic triangles and their interior angle sums.

{it Bull. Braz. Math. Soc. (N.S.),} {bf 49} 761--773 (2018), DOI: 10.1007/s00574-018-0077-9.

%

bibitem{T}

Thurston,~W.~P. (and Levy,~S. editor),

{it Three-Dimensional Geometry and Topology}. Princeton University Press, Princeton, New Jersey, vol. {bf 1} (1997).

%




DOI: http://dx.doi.org/10.24193/subbmath.2022.3.14

Refbacks

  • There are currently no refbacks.