Triangle angle sums related to translation curves in $\SOL$ geometry
Abstract
is one of the eight 3-dimensional Thurston geometries.
We analyse the interior angle sums of translation triangles in $\SOL$ geometry
and prove that it can be larger or equal than $\pi$.
In our work we will use the projective model of $\SOL$ described by E. Moln\'ar in \cite{M97}.
Keywords
Full Text:
PDFReferences
bibitem{B}
{Brodaczewska,~K.,}
Elementargeometrie in $NIL$.
textit{Dissertation (Dr. rer. nat.) Fakult"at Mathematik und Naturwissenschaften der Technischen Universit"at Dresden}
(2014).
%
bibitem{Ch}
Chavel,~I.,
{it Riemannian Geometry: A Modern Introduction}.
Cambridge Studies in Advances Mathematics, (2006).
%
bibitem{CsSz16}
Csima,~G.~--~Szirmai,~J.,
Interior angle sum of translation and geodesic triangles in $SLR$ space.
{it Filomat}, {bf 32/14}, 5023--5036, (2018).
%
bibitem{KN}
Kobayashi,~S.~--~Nomizu,~K.,
{it Fundation of differential geometry, I.}. Interscience, Wiley, New York (1963).
%
bibitem{Mi}
Milnor,~J.,
Curvatures of left Invariant metrics on Lie groups.
{it Advances in Math.,} {bf 21}, 293--329 (1976).
%
bibitem{M97}
Moln{'a}r,~E.,
The projective interpretation of the eight 3-di-men-sional homogeneous geometries.
{it Beitr. Algebra Geom.,} {bf 38}(2), 261--288 (1997).
%
bibitem{CaMoSpSz}
{Cavichioli,~A.~--~Moln'ar,~E.~--~Spaggiari,~F.~--~Szirmai,~J.,}
Some tetrahedron manifolds with $SOL$ geometry.
textit{J. Geom.,} {bf 105/3}, 601-614 (2014).
%
bibitem{KV}
{Kotowski,~M.~--~Vir'ag,~B.,}
Dyson's spike for random Schroedinger operators and Novikov-Shubin invariants of groups.
textit{Manuscript (2016)} arXiv:1602.06626.
%
%
bibitem{M97}
{Moln{'a}r,~E.,}
The projective interpretation of the eight 3-di-men-sional homogeneous geometries.
emph{Beitr. Algebra Geom.,}
{bf38} No.~2, 261--288, (1997).
%
bibitem{MoSzi10}
{Moln{'a}r,~E.~--~Szil'agyi,~B.,}
Translation curves and their spheres in homogeneous geometries.
textit{Publ. Math. Debrecen,}
{bf 78/2}, 327-346 (2010).
%
bibitem{MSz}
{Moln{'a}r,~E.~--~Szirmai,~J.,}
Symmetries in the 8 homogeneous 3-geometries.
textit{Symmetry Cult. Sci.,}
{bf 21/1-3}, 87-117 (2010).
%
bibitem{MSz12}
{Moln{'a}r,~E.~--~Szirmai,~J.,}
Classification of $SOL$ lattices.
textit{Geom. Dedicata,}
{bf 161/1}, 251-275 (2012).
%
bibitem{MSzV}
Moln{'a}r,~E.~--~Szirmai,~J.~--~Vesnin,~A.,
Projective metric realizations of cone-manifolds with singularities along 2-bridge knots and links.
{it J. Geom.,} {bf 95}, 91-133 (2009).
%
bibitem{MSzV14}
Moln{'a}r,~E.~--~Szirmai,~J.~--~Vesnin,~A.,
Packings by translation balls in $SLR$.
{it J. Geom.,} {bf 105}(2), 287--306 (2014)
%
bibitem{S}
Scott,~P.,
The geometries of 3-manifolds. {it Bull. London Math. Soc.} {bf 15}, 401--487 (1983).
%
bibitem{Sz13-1}
Szirmai,~J.,
A candidate to the densest packing with equal balls in the Thurston geometries.
{it Beitr. Algebra Geom.,} {bf 55}(2), 441--452 (2014).
%
bibitem{Sz18}
Szirmai,~J.,
Bisector surfaces and circumscribed spheres of tetrahedra derived
by translation curves in $SOL$ geometry.
{it New York J. Math.,} {bf 25}, 107--122 (2019).
%
bibitem{Sz13-2}
Szirmai,~J.,
The densest translation ball packing by fundamental lattices in $SOL$ space.
{it Beitr. Algebra Geom.,} {bf 51}(2) 353--373 (2010).
%
bibitem{Sz16}
Szirmai,~J.,
$NIL$ geodesic triangles and their interior angle sums.
{it Bull. Braz. Math. Soc. (N.S.),} {bf 49} 761--773 (2018), DOI: 10.1007/s00574-018-0077-9.
%
bibitem{T}
Thurston,~W.~P. (and Levy,~S. editor),
{it Three-Dimensional Geometry and Topology}. Princeton University Press, Princeton, New Jersey, vol. {bf 1} (1997).
%
DOI: http://dx.doi.org/10.24193/subbmath.2022.3.14
Refbacks
- There are currently no refbacks.