Fekete-Szego inequality of bi-starlike and bi-convex functions of order b associated with symmetric q-derivative in conic domains
Abstract
Keywords
Full Text:
PDFReferences
c S. Alti nkaya and S. Yalc ci n, Upper bound of second Hankel determinant for bi-Bazileviv{c} functions, Mediterr. J. Math. {bf 13} (2016), no.~6, 4081--4090.
c S. Alti nkaya and S. Yalc ci n, Estimates on coefficients of a general subclass of bi-univalent functions associated with symmetric $q-$ derivative operator by means of the chebyshev polynomials, emph{Asia Pacific Journal of Mathematics}, Vol.4, no.2 (2017), pp. 9099.
c S. Alti nkaya and S. Yalc ci n, On the Chebyshev polynomial coefficient problem of some subclasses of bi-univalent functions, Gulf J. Math. {bf 5} (2017), no.~3, 34--40.
R. M. Ali, S. K. Lee, V. Ravichandran, S. Supramanian, Coefficient estimates for bi-univalent Ma-Minda starlike and convex functions, Appl. Math. Lett. {bf 25} (2012), no.~3, 344--351.
S. Annamalai, S. Sivasubramanian and C. Ramachandran, Hankel determinant for a class of analytic functions involving conical domains defined by subordination, Math. Slovaca {bf 67} (2017), no.~4, 945--956.
R. Bharati, R. Parvatham and A. Swaminathan, On subclasses of uniformly convex functions and corresponding class of starlike functions, Tamkang J. Math. {bf 28} (1997), no.~1, 17--32.
K. Brahim and Y. Sidomou, On some symmetric $q$-special functions, Matematiche (Catania) {bf 68} (2013), no.~2, 107--122.
A. W. Goodman, {it Univalent functions. Vol. I $&$ II}, Mariner Publishing Co., Inc., Tampa, FL, 1983.
A. W. Goodman, On uniformly convex functions, Ann. Polon. Math. {bf 56} (1991), no.~1, 87--92.
A. W. Goodman, On uniformly starlike functions, J. Math. Anal. Appl. {bf 155} (1991), no.~2, 364--370.
F. H. Jackson, On $q-$functions and a certain difference operator, emph{Trans. Royal Soc. Edinburgh}, textbf{46} (1908), 253--281.
J. M. Jahangiri, N. Magesh and J. Yamini, Fekete-Szeg"{o} inequalities for classes of bi-starlike and bi-convex functions, Electron. J. Math. Anal. Appl. {bf 3} (2015), no.~1, 133--140.
S. Kanas and A. Wi'{s}niowska, Conic domains and starlike functions, Rev. Roumaine Math. Pures Appl. {bf 45} (2000), no.~4, 647--657.
S. Kanas and A. Wisniowska, Conic regions and $k$-uniform convexity, J. Comput. Appl. Math. {bf 105} (1999), no.~1-2, 327--336.
M. Lewin, On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc. {bf 18} (1967), 63--68.
W. C. Ma and D. Minda, Uniformly convex functions, Ann. Polon. Math. {bf 57} (1992), no.~2, 165--175.
W. C. Ma and D. Minda, Uniformly convex functions. II, Ann. Polon. Math. {bf 58} (1993), no.~3, 275--285.
J. Nishiwaki and S. Owa, Certain classes of analytic functions concerned with uniformly starlike and convex functions, Appl. Math. Comput. {bf 187} (2007), no.~1, 350--355.
H. Orhan, N. Magesh and V. K. Balaji, Fekete-Szeg"{o} problem for certain classes of Ma-Minda bi-univalent functions, Afr. Mat. {bf 27} (2016), no.~5-6, 889--897.
H. Orhan, N. Magesh and J. Yamini, Bounds for the second Hankel determinant of certain bi-univalent functions, Turkish J. Math. {bf 40} (2016), no.~3, 679--687.
R. K. Raina and J. Sok'{o}l, On coefficient estimates for a certain class of starlike functions, Hacet. J. Math. Stat. {bf 44} (2015), no.~6, 1427--1433.
F. Ro nning, On starlike functions associated with parabolic regions, Ann. Univ. Mariae Curie-Skl odowska Sect. A {bf 45} (1991), 117--122.
S. Shams, S. R. Kulkarni and J. M. Jahangiri, Classes of uniformly starlike and convex functions, Int. J. Math. Math. Sci. {bf 2004}, no.~53-56, 2959--2961.
Y. J. Sim, O. S. Kwon, N. E. Cho, H. M. Srivastava, Some classes of analytic functions associated with conic regions, Taiwanese J. Math. {bf 16} (2012), no.~1, 387--408.
H. M. Srivastava, S. Bulut, M. c{C}au{g}lar, N. Yau{g}mur, Coefficient estimates for a general subclass of analytic and bi-univalent functions, Filomat {bf 27} (2013), no.~5, 831--842.
H. M. Srivastava, S. S. Eker and R. M. Ali, Coefficient bounds for a certain class of analytic and bi-univalent functions, Filomat {bf 29} (2015), no.~8, 1839--1845.
H. M. Srivastava, S. Gaboury and F. Ghanim, Initial coefficient estimates for some subclasses of $m$-fold symmetric bi-univalent functions, Acta Math. Sci. Ser. B (Engl. Ed.) {bf 36} (2016), no.~3, 863--871.
H. M. Srivastava, S. Gaboury and F. Ghanim, Coefficient estimates for some general subclasses of analytic and bi-univalent functions, Afr. Mat. {bf 28} (2017), no.~5-6, 693--706.
H. M. Srivastava, A. K. Mishra and P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett. {bf 23} (2010), no.~10, 1188--1192.
H. M. Srivastava, G. Murugusundaramoorthy, N. Magesh, On certain subclasses of bi-univalent functions associated with Hohlov operator. Global J. Math. Anal. textbf{1 } (2013), no.~2, 67--73.
H. Tang, H. M. Srivastava, S. Sivasubramanian and P. Gurusamy,
The Fekete-Szeg"{o} functional problems for some subclasses of $m$-fold symmetric bi-univalent functions, J. Math. Inequal. {bf 10} (2016), no.~4, 1063--1092.
P. Zaprawa, On the Fekete-Szeg"{o} problem for classes of bi-univalent functions, Bull. Belg. Math. Soc. Simon Stevin {bf 21} (2014), no.~1, 169--178.
DOI: http://dx.doi.org/10.24193/subbmath.2022.3.02
Refbacks
- There are currently no refbacks.