Strong subordination and superordination with sandwich-type theorems using integral operators
Abstract
Keywords
Full Text:
PDFReferences
bibitem{1.a} Antonino, J. A., {it Strong differential subordination and applications to univalency conditions}, J. Korean Math. Soc., {bf 43}, 311-322, 2006.
bibitem{2.a} Bulboaca, T.,{it A class of double subordination-preserving integral operators}, Pure Math. Appl., {bf 15}, 87-106, 2004.
bibitem{3.a} Cho, N. E., {it Sandwich-type theorems for a class of nonlinear integral operators}, Proceeding book of the international symposium on geometric function theory and applications, 25-38, 2007.
bibitem{4.a} Cho, N. E. and Bulboaca, T., {it Subordination and superordination properties for a class of integral operators}, Acta Math. Sinica, {bf 26}, 515-522, 2010.
bibitem{5.a} Duren, P. L., {em Univalent functions}, Springer-Verlag, New York, 1983.
bibitem{6.a} Jeyaraman, M. P. and Suresh, T. K., {it Strong differential subordination and superordination of analytic functions}, J. Math. Anal. Appl., {bf 385}, 854-864, 2012.
bibitem{7.a} Miller, S. S., Mocanu, P. T., emph{Differential subordinations, theory and applications}, Marcel Dekker, Jnc., New York, 2000.
bibitem{8.a} Oros, Gh., {it Briot-Bouquet strong differential superordinations and sandwich theorems}, Math. reports, {bf 12 (62)}, 277-283, 2010.
bibitem{11.a} Oros, G. I., {it On a new strong differential subordination}, Acta Univ. Apulensis, {bf 32}, 243-250, 2012.
bibitem{9.a} Oros, G. I. and Oros, Gh., {it Strong differential subordination}, Turkish journal of mathematics, {bf 33}, 249-257, 2009.
bibitem{10.a} Raina, R. K. and Sharma, P., {it Subordination preserving properties associated with a class of operators}, Le Matematiche, vol. LXVIII, 217-228, 2013
DOI: http://dx.doi.org/10.24193/subbmath.2021.4.06
Refbacks
- There are currently no refbacks.