Majorization problems for certain starlike functions associated with the exponential function
Abstract
Let $\mathcal{S}^*_e$ and $\mathcal{S}^*_B$ denote the class of analytic functions $f$ in the open unit disc normalized by $f(0)=0=f'(0)-1$ and satisfying, respectively, the following subordination relations:
\begin{equation*}
\frac{zf'(z)}{f(z)}\prec e^z\quad{\rm and}\quad\frac{zf'(z)}{f(z)}\prec e^{e^z-1}.
\end{equation*}
In this article, we investigate majorization problems for the classes $\mathcal{S}^*_e$ and $\mathcal{S}^*_B$ without acting upon any linear or nonlinear operators.
\begin{equation*}
\frac{zf'(z)}{f(z)}\prec e^z\quad{\rm and}\quad\frac{zf'(z)}{f(z)}\prec e^{e^z-1}.
\end{equation*}
In this article, we investigate majorization problems for the classes $\mathcal{S}^*_e$ and $\mathcal{S}^*_B$ without acting upon any linear or nonlinear operators.
Keywords
Univalent; Starlike; Exponential function; Majorization; Subordination; Bell numbers.
Full Text:
PDFDOI: http://dx.doi.org/10.24193/subbmath.2022.4.05
Refbacks
- There are currently no refbacks.