Harmonic mappings and its directional convexity

Poonam Sharma, Omendra Mishra

Abstract


For any $\mu _{j}\ (\mu _{j}\in \mathbb{C},\left\vert \mu _{j}\right\vert
=1,j=1,2)$, we consider the rotations $f_{\mu _{1}}$ and $F_{\mu _{2}}$ of
right half-plane harmonic mappings $f,F\in S_{\mathcal{H}}$ which are CHD
with the prescribed dilatations $\omega _{f}(z)=\left( a-z\right) /\left(
1-az\right) $ for some $a$ $\left( -1<a<1\right) $ and $\omega _{F}(z)=$ $
e^{i\theta }z^{n}$ $\left( n\in \mathbb{N},\theta \in \mathbb{R}\right) $, $\omega _{F}(z)=$ $\left( b-z\right) /\left( 1-bz\right) $, $\omega
_{F}(z)=\left( b-ze^{i\phi }\right) /\left( 1-bze^{i\phi }\right) $ $%
(-1<b<1,\phi \in \mathbb{R})$, respectively. It is proved that the
convolution $f_{\mu _{1}}\ast F_{\mu _{2}}\in S_{\mathcal{H}}$ and is convex
in the direction of $\overline{\mu _{1}\mu _{2}}$ under certain conditions
on the parameters involved.


Keywords


harmonic functions; half-plane mappings; convexity in one direction; harmonic convolution; directional convexity

Full Text:

PDF

References


S. Beig and V. Ravichandran, textit{Convexity in one direction of convolution and convex combinations of harmonic functions},

accepted in Bulletin of Iranian Mathematical Society (BIMS) 2018.

J. Clunie and T. Sheil-Small, textit{Harmonic univalent functions}, Ann. Acad. Sci. Fenn. Ser. A I Math. textbf{9} (1984), 3--25.

M. Dorff, textit{Convolutions of planar harmonic convex mappings}, Complex Variables Theory Appl. textbf{45} (2001), no.~3,

--271.

M. Dorff, M. Nowak and M. Wol oszkiewicz, textit{Convolutions of harmonic convex mappings}, Complex Var. Elliptic Equ. textbf{57} (2012), no.~5, 489--503.

M. J. Dorff and J. S. Rolf, textit{Anamorphosis, mapping

problems, and harmonic univalent functions}, in Explorations in complex

analysis, 197--269, Classr. Res. Mater. Ser, Math. Assoc. America,

Washington, DC.

R. Kumar, M. Dorff, S. Gupta, and S. Singh, textit{%

Convolution properties of some harmonic mappings in the right half-plane}, Bull. Malays. Math. Sci. Soc. textbf{39} (2016), no.~1, 439--455.

R. Kumar, S. Gupta and S. Singh, textit{Convolution

properties of a slanted right half-plane mapping}, Mat. Vesnik textbf{65} (2013), no.~2, 213--221.

Y. Li and Z. Liu, textit{Convolutions of harmonic right

half-plane mappings}, Open Math. textbf{14} (2016), 789--800.

L. Li and S. Ponnusamy, textit{Convolutions of slanted

half-plane harmonic mappings}, Analysis (Munich) textbf{33} (2013), no.~2,

--176.

L. Li and S. Ponnusamy, textit{Solution to an open

problem on convolutions of harmonic mappings}, Complex Var. Elliptic Equ. textbf{58} (2013), no.~12, 1647--1653.

L. Li and S. Ponnusamy, Note on the convolution of harmonic mappings, Bull. Aust. Math. Soc. {bf 99} (2019), no.~3, 421--431.

H. Lewy, textit{On the non-vanishing of the Jacobian in

certain one-to-one mappings}, Bull. Amer. Math. Soc. textbf{42} (1936),

no.~10, 689--692.

Z. Liu and S. Ponnusamy, textit{Univalency of convolutions of

univalent harmonic right half-plane mappings}, Comput. Methods Funct. Theory textbf{17} (2017), no.~2, 289--302.

C. Pommerenke, textit{On starlike and close-to-convex functions}, Proc. London Math. Soc. (3) textbf{13} (1963), 290--304.

Q. I. Rahman and G. Schmeisser, textit{Analytic theory of

polynomials}, London Mathematical Society Monographs. New Series, 26, The Clarendon Press, Oxford University Press, Oxford, 2002.




DOI: http://dx.doi.org/10.24193/subbmath.2021.4.07

Refbacks

  • There are currently no refbacks.