Mellin transform in bicomplex space and its application

Ritu Agarwal, Mahesh Puri Goswami, Ravi P. Agarwal

Abstract


Motivated by the recent applications of bicomplex theory to the study of functions of large class, in this paper, we define bicomplex Mellin transform of bicomplex-valued functions. Also, we derive some of it's basic properties and inversion theorem in bicomplex space. Application of bicomplex Mellin transform in networks with time-varying parameters problem has been illustrated.

Keywords


Bicomplex functions, Bicomplex numbers, Bicomplex Laplace transform and Mellin transform

Full Text:

PDF

References


bibitem{RM142} Agarwal R., Goswami M.P. and Agarwal R.P., emph{ Bicomplex Version of Stieltjes Transform and Applications,} Dynamics of Continuous, Discrete and Impulsive Systems Series B: Applications & Algorithms, textbf{21}(2014), no. 4-5, 229-246.

bibitem{RM141} Agarwal R., Goswami M.P. and Agarwal R.P., emph{ Convolution Theorem and Applications of Bicomplex Laplace Transform,} Advances in Mathematical Sciences and Applications, textbf{24}(2014), no. 1, 113-127.

bibitem{RM143} Agarwal R., Goswami M.P. and Agarwal R.P., emph{ Tauberian Theorem and Applications of Bicomplex Laplace-Stieltjes Transform,} Dynamics of Continuous, Discrete and Impulsive Systems, Series B: Applications & Algorithms, textbf{22}(2015), 141-153.

bibitem{RM144} Agarwal R., Goswami M.P. and Agarwal R.P., emph{ Bochner Theorem and Applications of Bicomplex Fourier-Stieltjes Transform,} Advanced Studies in Contemporary Mathematics, textbf{26}(2016), no. 2, 355-369.

bibitem{BD14} Banerjee A., Datta S.K., and Hoque A., emph{ Fourier transform and its inverse for functions of bicomplex variables,} arXiv.org math arXiv:1404.4236, (2014) 1-20.

bibitem{Db01} Davies B., emph{Integral Transforms and Their Applications,} Springer, ISBN 0-387-95314-0, 2001.

bibitem{LD06} Debnath Loknath and Bhatta Dambaru, emph{Integral transforms and their applications}, Chaman $&$ Hall/CRC Taylor $&$ Francis Group, ISBN 1-58488-575-0, 2006.

bibitem{gD34} Dragoni G.S., emph{ Sulle funzioni olomorfe di una variable bicomplessa,} Reale Acad. d'Italia Mem. Class Sci. Fic. Mat. Nat., textbf{5}(1934), 597-665.

bibitem{FGD95} Flajolet P., Gourdon X. and Dumas P., emph{ Mellin transforms and asymptotics: Harmonic sums,} Theoretical computer science, textbf{144}(1995), 3-58.

bibitem{mF28} Futagawa M., emph{ On the theory of functions of quaternary variable-I,} Tohoku Math. J., textbf{29}(1928), 175-222.

bibitem{mF32} Futagawa M., emph{ On the theory of functions of quaternary variable-II,} Tohoku Math. J., textbf{35}(1932), 69-120.

bibitem{Gf59} Gerardi F.R., emph{ Application of Mellin and Hankel Transforms to networks with time-varying parameters,} IRE transaction on circuit theory, textbf{6}(1959), no. 2, 197-208.

bibitem{Gr07} Goyal R., emph{ Bicomplex Polygamma function,} Tokyo Journal of Mathematics, textbf{30}(2007), no. 2, 523-530.

bibitem{AP11} Kumar A. and Kumar P., emph{ Bicomplex version of Laplace Transform,} International Journal of Engg. and Tech., textbf{3}(2011), no. 3, 225-232.

bibitem{Pa99} Poularikas A.D., emph{The Transforms and Applications Handbook,} CRC press, ISBN 0-8493-8595-4, 1999.

bibitem{gP91} Price G. B., emph{An Introduction to multicomplex spaces and functions}, Marcel Dekker Inc., New York, 1991.

bibitem{rs01} R"{o}nn Stefan, emph{ Bicomplex algebra and function theory,} arXiv:math/0101200v1 [math.CV], (2001), 1-71.

bibitem{cS92} Segre C., emph{ Le rappresentazioni reale delle forme complesse’e Gli Enti Iperalgebrici,} Math. Ann., textbf{40}(1892), 413-467.




DOI: http://dx.doi.org/10.24193/subbmath.2017.2.08

Refbacks

  • There are currently no refbacks.