On a subclass of analytic functions for a operator on Hilbert Space
Abstract
functions for operators on a Hilbert space in the open unit disk U =
fz 2 C : jzj < 1g. We have established coecient estimates, distortion
theorem for this subclass, and also an application to operators based on
fractional calculus for this class is investigated.
Keywords
Full Text:
PDFReferences
N. Dunford and J. T. Schwartz, Linear operators part I. General Theory, New
York-London, (1958).
K. Fan, Analytic functions of a proper contraction, Math. Zeitschr., 160(1978),
-290.
V. P. Gupta , P. K. Jain, A certain classes of univalent functions with negative
coecients, Bull. Austral. Math. Soc., 14(1976), 409-416.
T. H. MacGregor, The radius of convexity for starlike functions of order 1
,
Proc. Amer. Math. Soc., 14(1963), 71-76.
S. Owa, On the distortion theorem, Kyungpook Math. J. , 18(1978), 53-59.
S. Owa, M. K. Aouf, Some applications of fractional calculus operators to
classes of univalent functions negative coecients, Integral Trans.and Special
Functions, 3(1995), no. 3 211-220.
M. S. Robertson, A characterization of the class of starlike univalent functions,
Michigan Math. J., 26(1979), 65-69.
A. Schild, On a class of functions schlicht in the unit circle, Proc. Amer. Math.
Soc. 5(1954), 115-120.
H. Silverman, Univalent functions with negative coecients, Proc. Amer. Math.
Soc., 51(1975), 109-116.
Y. Xiaopei, A subclass of analytic p-valent functions for operator on Hilbert
space, Math. Japon., 40(1994), no. 2 303-308.
D. Xia, Spectral theory of hyponormal operators, Sci. Tech. Press, Shanghai,
(1981), Birkhauser Verlag, Basel-Boston-Stuttgart, (1983), 1-241.
Refbacks
- There are currently no refbacks.