On a subclass of analytic functions for a operator on Hilbert Space

Santosh B Joshi, Sayali S Joshi, Ram N Mohapatra

Abstract


In this paper we introduce and study a subclass of analytic
functions for operators on a Hilbert space in the open unit disk U =
fz 2 C : jzj < 1g. We have established coecient estimates, distortion
theorem for this subclass, and also an application to operators based on
fractional calculus for this class is investigated.

Keywords


univalent function, coefficient estimates, distortion theorem,

Full Text:

PDF

References


N. Dunford and J. T. Schwartz, Linear operators part I. General Theory, New

York-London, (1958).

K. Fan, Analytic functions of a proper contraction, Math. Zeitschr., 160(1978),

-290.

V. P. Gupta , P. K. Jain, A certain classes of univalent functions with negative

coecients, Bull. Austral. Math. Soc., 14(1976), 409-416.

T. H. MacGregor, The radius of convexity for starlike functions of order 1

,

Proc. Amer. Math. Soc., 14(1963), 71-76.

S. Owa, On the distortion theorem, Kyungpook Math. J. , 18(1978), 53-59.

S. Owa, M. K. Aouf, Some applications of fractional calculus operators to

classes of univalent functions negative coecients, Integral Trans.and Special

Functions, 3(1995), no. 3 211-220.

M. S. Robertson, A characterization of the class of starlike univalent functions,

Michigan Math. J., 26(1979), 65-69.

A. Schild, On a class of functions schlicht in the unit circle, Proc. Amer. Math.

Soc. 5(1954), 115-120.

H. Silverman, Univalent functions with negative coecients, Proc. Amer. Math.

Soc., 51(1975), 109-116.

Y. Xiaopei, A subclass of analytic p-valent functions for operator on Hilbert

space, Math. Japon., 40(1994), no. 2 303-308.

D. Xia, Spectral theory of hyponormal operators, Sci. Tech. Press, Shanghai,

(1981), Birkhauser Verlag, Basel-Boston-Stuttgart, (1983), 1-241.


Refbacks

  • There are currently no refbacks.