Positivity of sums and integrals for n-convex functions via the Fink identity and new Green functions
Abstract
We consider positivity of sum $\sum_{i=1}^np_if(x_i)$ involving convex functions of higher order. Analogous for integral $\int_a^bp(x)f(g(x))dx$ is also given. Representation of a function $f$ via the Fink identity and the Green function leads us to identities for which we obtain conditions for positivity of the mentioned sum and integral. We obtain bounds for integral remainders which occur in those identities as well as corresponding mean value theorems.
Keywords
Full Text:
PDFReferences
A. M. Fink, Bounds of the deviation of a function from its avereges, Czechoslovak Math. J. 42(117) (1992), 289-310.
I. A. Baloch, J. Peˇcari´c and M. Praljak, Generalization of Levinson’s inequality, J. Math. Inequal. 9 (2015), 571–586.
Saad Ihsan Butt, Nasir Mehmood and Josip Peˇcari´c, New generalization of Popoviciu type inequalities via new Green functions and Taylor’s formula, submitted.
P. Cerone and S. S. Dragomir, Some new Owstrowski-type bounds for the ˇCebyˇsev functional and applications, J. Math. Inequal., 8(1) (2014), 159-170.
A. R. Khan, J. E. Peˇcari´c and M. Praljak, Popoviciu type inequalities for n-convex functions via extension of Montgomery identity, submitted.
Asif R. Khan, Josip Peari and Mirna Rodic Lipanovic, n-Exponential Convexity for Jensentype Inequalities, J. Math. Inequal., 7 (3) (2013), 313–335.
Asif R. Khan, J. Peˇcari´c, M. Praljak and S. Varoˇsanec, General Linear Inequalities and Positivity / Higher order convexity. Monographs in inequalities 12, Element, Zagreb, 2017., pp. 269.
Asif R. Khan, J. E. Peˇcari´c and S. Varoˇsanec, Popoviciu type characterization of positivity of sums and integrals for convex functions of higher order, J. Math. Inequal., 7 (2) (2013), 195–212.
Asif R. Khan, J. Peˇcari´c, M. Praljak and S. Varoˇsanec, Positivity of sums and integrals of n−convex functions via the Fink identity, submitted.
Asif R. Khan, N. Latif and J. E. Peˇcari´c, Exponential convexity for majorization, J. Inequal. Appl., 2012 (2012): 105, 1–13.
M. Mati´c, J. Peˇcari´c and N. Ujevi´c, Some new Owstrowski-type bounds for the ˇCebyˇsev functional and applications, Computer. Math. Appl., 39 (3-4) (2000), 161-175.
J. Peˇcari´c, M. Praljak and A. Witkowski, Linear operator inequality for n-convex functions at a point, Math. Ineq. Appl. 18 (2015), 1201–1217.
J. Peˇcari´c, On Jessens Inequality for Convex Functions, III, J. Math. Anal. Appl., 156 (1991), 231-239.
J. E. Peˇcari´c, F. Proschan and Y. L. Tong, Convex functions, partial orderings and statistical applications, Academic Press, New York, 1992.
Josip Peˇcari´c, Anamarija Peruˇsi´c and Ksenija Smoljak, Generalizations of Steffensens Inequality by Abel-Gontscharoff Polynomial, Khayyam J. Math. 1 (2015), no. 1, 45-61.
T. Popoviciu, Notes sur les fonctions convexes d’orde superieur III, Mathematica (Cluj) 16, (1940), 74-86.
T. Popoviciu, Notes sur les fonctions convexes d’orde superieur IV, Disqusitiones Math. 1, (1940), 163-171.
T. Popoviciu, Les fonctions convexes, Herman and Cie, Editeurs, Paris 1944.
DOI: http://dx.doi.org/10.24193/subbmath.2021.4.02
Refbacks
- There are currently no refbacks.