On a pure traction problem for the nonlinear elasticity system in Sobolev spaces with variable exponents

Authors

  • Zoubai Fayrouz Setif 1 University, Department of Mathematics, Applied Mathemathics Laboratory (LaMA).
  • Merouani Boubakeur Setif 1 University, Department of Mathematics, Applied Mathemathics Laboratory (LaMA).

DOI:

https://doi.org/10.24193/subbmath.2022.1.12

Keywords:

Spaces of Lebesgue and Sobolev with variable exponents, Nonlinear Elasticity System, Operator of Leray-Lions, Existence, Uniqueness, Neumann problem

Abstract

One can find in the literature several authors who studied the system of
elasticity with laws of particular behavior and using various techniques in constant exponents Sobolev spaces. In this article we consider a Neumann problem for nonlinear elasticity system with laws of general behavior. The coefficients of elasticity depends on x and the density of the volumetric forces depends on the displacement. We consider this problem as a Leray-Lions operator and the main aim of this paper is to apply Galerkin techniques and monotone operator theory to prove a theorem of existence and uniqueness.

Author Biographies

  • Zoubai Fayrouz, Setif 1 University, Department of Mathematics, Applied Mathemathics Laboratory (LaMA).
    Setif-19000  
  • Merouani Boubakeur, Setif 1 University, Department of Mathematics, Applied Mathemathics Laboratory (LaMA).
    Setif-19000  

References

M. B. Benboubker, Sur certains problèmes elliptiques quasilinéaires non homogènes de type Dirichlet ou Neumann, Université Sidi Mohamed Ben Abdellah, 2013.

Y. Chen, S. Levine, M. Rao, Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math. 66(4)(2006)1383-1406.

P. G. Ciarlet, Mathematical elasticity, Vol. I: Three-Dimensional Elasticity, North-Holland, Amsterdam (1988).

D.V. Cruz-Uribe, A. Fiorenza: Variable Lebesgue Spaces: Foundations and Harmonic Analysis. Birkhäuser, Basel (2013).

R. Dautray, J.L. Lions, Analyse mathématique et calcul numérique pour les sciences et les techniques, Vol.1, Masson (1984).

L. Diening, P. Harjulehto, P. Hästo, M. Růžička : Lebesgue and Sobolev spaces with variable exponents, volume 2017 of Lecture Notes in Mathematics. Springer, Heidelberg (2017).L. Diening, P. Harjulehto, P. Hästo, M. Růžička : Lebesgue and Sobolev spaces with variable exponents, volume 2017 of Lecture Notes in Mathematics. Springer, Heidelberg (2017).

A. El Hachimi, S. Maatouk, Existence of periodic solutions for some quasilinear parabolic problems with variable exponents. Arab. J. Math. (2017) 6:263-280.

X. Fan, Boundary trace embedding theorems for variable exponent Sobolev spaces. J. Math. Anal. Appl. 339 (2008) 1395-1412.

X. Fan, D. Zhao: On the spaces L^{p(x)}(Ω) and W^{1,p(x)}(Ω). J. Math. Anal. Appl. 263, 424-446(2001).

T. Gallouët, R. Herbin, Mesure, Interation, Probabilites, (2011).

T. Gallouët, R. Herbin, Equations aux dérivées partielles, Université Aix Marseille, 2013.

J. Leray, J. L. Lions, Quelques résultats de visik sur les problèmes elliptiques non linéaires par les méthodes de Minty-Browder, Bull. Soc. Math. France 93 (1965), 97-107.

J. L. Lions, Quelques méthode de résolution des problèmes aux limites non linéaires, Dunod, Paris (1969).

B. Merouani and R. Boufenouche, Trigonometric series adapted for the study of Dirichlet boundary-value problems of Lamé systems; Electronic journal of differential equations, vol. 2015 (2015), no. 181, pp. 1-6. issn: 1072-6691.

B. Merouani, Solutions singulières du système de l'élasticité dans un polygone pour différentes conditions aux limites, Maghreb math, Rev, Vol 5, Nos 1 & 2, 1996, pp.95-112.

B. Merouani, Quelques problèmes aux limites pour le système de Lamé dans un secteur plan, C.R.A.S., T. 304, série I, no. 13, 1987.

S. Ouarda, Sur l'existence de solutions non-triviales d'un système d'équations aux dérivées partielles avec l'opérateur p-Laplacien, Université Badji Mokhtar Annaba, 2014-2015.

P. H. Rabinowitz, Théorie du degré topologique et application à des problèmes aux limites non linéaires (Lecture note by H. Berestycki), Report 75010, Laboratoire d'analyse Numériqe, Université Pierre et et Marie Curie, Paris (1989).

P. A. Raviart, J. M. Tomas, Introduction à l'analyse numériques des équations aux dérivées partielles, Masson, Paris (1983).

M. Růžička, Electrorheological Fluids: Modeling and Mathematical Theory, Lecture Notes in Math., vol. 1784, Springer-Verlag, Berlin, 2000.

V.V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory, Izv. Math. USSR 29 (1987) 33-36.

F. Zoubai, B. Merouani, A nonlinear elasticity system in Sobolev space with variable exponents (submit to Mathematical Methods in the Applied Sciences) 2019.

Downloads

Published

2022-03-10

Issue

Section

Articles