Certain class of m-fold functions by applying Faber polynomial expansions
Abstract
Keywords
Full Text:
PDFReferences
bibitem{Airault1} Airault, H., Bouali, A., emph{Differential calculus on the Faber polynomials},
Bull. Sci. Math., textbf{130}(2006), 179-222.
bibitem{Airault2} Airault, H., Ren, J., emph{An algebra of differential operators and generating functions on the set of univalent functions}, Bull. Sci. Math. textbf{26}(2002), no. 5, 343-367.
bibitem{Altinkaya} Altinkaya, c{S}., Yalc{c}in, S., emph{Coefficient bounds for two new subclasses of $m$-fold symmetric bi-univalent functions}, Serdica Math. J., textbf{42}(2016), 175-186.
bibitem{Bouali} Bouali, A., emph{Faber polynomials, Cayley-Hamilton equation and Newton symmetric functions}, Bull. Sci. Math.,
textbf{130}(2006), no. 1, 49-70.
bibitem{Brannan} Brannan, D. A., Taha, T. S., emph{On Some classes of bi-univalent functions},
Stud. Univ. Babec{s}-Bolyai Math., textbf{31}(1986), no. 2, 70-77.
bibitem{Caglar} c{C}au{g}lar, M., Orhan, H., Yau{g}mur, N., emph{Coefficient bounds for new subclasses of bi-univalent functions},
Filomat, textbf{27}(2013), no. 7, 1165-1171.
bibitem{Duren}Duren, P. L. , emph{Univalent functions}, Grundlehren der Mathematischen Wissenschaften, Band 259, Springer-Verlag, New York, Berlin, Heidelberg and Tokyo, 1983.
bibitem{Eker1} Eker, S. S., emph{Coefficient bounds for subclasses of $m$-fold symmetric bi-univalent functions}, Turkish J. Math.,
textbf{40}(2016), no. 3, 641-646.
bibitem{Fab} Faber, G., emph{$ddot{U}$ber polynomische Entwickelungen}, Math. Ann., textbf{57}(1903), no. 3, 389-408.
bibitem{Frasin} Frasin, B. A., Aouf, M. K., New subclasses of bi-univalent functions, Appl. Math. Lett., textbf{24}(2011), 1569-1573.
bibitem{Jahangiri1} Hamidi, S. G., Jahangiri, J. M., emph{Unpredictability of the coefficients of $m$-fold symmetric bi-starlike functions},
Internat. J. Math., textbf{25}(2014). no. 7, Art. ID 1450064, 8 pages.
bibitem{Jahangiri} Jahangiri, J. M., Hamidi, S. G., emph{Faber polynomial coefficient estimates for analytic bi-bazlevic{c} functions},
Mat. Vesnik, {bf 67}(2015), no. 2, 123-129.
bibitem{Jahangiri2} Jahangiri, J. M., Hamidi, S. G., emph{Coefficient estimates for certain classes of bi-univalent functions},
Int. J. Math. Math. Sci., textbf{2013}, Art. ID 190560, 4 pages.
bibitem{Koepf} Koepf, W., emph{Coefficients of symmetric functions of bounded boundary rotation}, Proc. Amer. Math. Soc.,
textbf{105}(1989), no. 2, 324-329.
bibitem{Po} Pommerenke, Ch., emph{Univalent Functions}, Vandenhoeck and Ruprecht, Gottingen, 1975.
bibitem{Srivastava1} Srivastava, H. M., Bansal, D., emph{Coefficient estimates for a subclass of analytic and bi-univalent functions},
J. Egyptian Math. Soc., textbf{23}(2015), 242-246.
bibitem{Srivastava4} Srivastava, H. M., Gaboury, S., Ghanim, F., emph{Coefficient estimates for some general subclasses of analytic and bi-univalent functions}, Afr. Mat., textbf{28}(2017), 693-706.
bibitem{Srivastava7}Srivastava, H. M., Mishra, A. K., Gochhayat, P., emph{Certain subclasses of analytic and bi-univalent functions},
Appl. Math. Lett., textbf{23}(2010), 1188-1192.
bibitem{Srivastava8} Srivastava, H. M., Sivasubramanian, S., Sivakumar, R., emph{Initial coefficient bounds for a subclass of $m$-fold symmetric bi-univalent functions}, Tbilisi Math. J., textbf{7}(2014), 1-10.
bibitem{Todo} Todorov, P. G., emph{On the Faber polynomials of the univalent functions of class $Sigma$}, J. Math. Anal. Appl.,
textbf{162}(1991), no. 1, 268-276.
bibitem{QH} Xu, Q.-H., Gui, Y.-C., Srivastava, H. M., emph{Coefficient estimates for a Certain subclass of analytic and bi-univalent functions}, Appl. Math. Lett., textbf{25}(2012), 990-994.
bibitem{Q1} Xu, Q.-H., Xiao, H.-G., Srivastava, H. M., emph{A certain general subclass of analytic and bi-univalent functions and associated coefficient estimate problems}, Appl. Math. Comput., textbf{218}(2012), no. 23, 11461-11465.
bibitem{Zireh} Zireh, A., Salehian, S., emph{On the certain subclass of analytic and bi-univalent functions defined by convolution}, Acta Univ. Apulensis Math. Inform., textbf{44}(2015), 9-19.
DOI: http://dx.doi.org/10.24193/subbmath.2021.3.07
Refbacks
- There are currently no refbacks.