Different type parameterized inequalities via generalized integral operators with applications

Artion Kashuri, Rozana Liko

Abstract


The authors have proved an identity for a generalized integral operator via differentiable function with parameters. By applying the established identity, the generalized trapezium, midpoint and Simpson type integral inequalities have been discovered. It is pointed out that the results of this research provide integral inequalities for almost all fractional integrals discovered in recent past decades. Various special cases have been identified. Some applications of presented results to special means and new error estimates for the trapezium and midpoint quadrature formula have been analyzed. The ideas and techniques of this paper may stimulate further research in the field of integral inequalities.

Keywords


Trapezium inequality; Simpson inequality; preinvexity; general fractional integrals.

Full Text:

PDF

References


bibitem{SaMdSv1}

Aslani, S.M., Delavar, M.R. and Vaezpour, S.M.,

textit{Inequalities of Fej'{e}r type related to generalized convex functions with applications},

Int. J. Anal. Appl., $mathbf{16}$(1) (2018), 38--49.

bibitem{FcSw}

Chen, F.X. and Wu, S.H.,

textit{Several complementary inequalities to inequalities of Hermite-Hadamard type for $s$-convex functions}, J. Nonlinear Sci. Appl., $mathbf{9}$(2) (2016), 705--716.

bibitem{CKKA}

Chu, Y.M., Khan, M.A., Khan, T.U. and Ali, T.,

textit{Generalizations of Hermite-Hadamard type inequalities for $MT$-convex functions},

J. Nonlinear Sci. Appl., $mathbf{9}$(5) (2016), 4305--4316.

bibitem{MrdSsd1}

Delavar, M.R. and Dragomir, S.S.,

textit{On $eta$-convexity},

Math. Inequal. Appl., $mathbf{20}$ (2017), 203--216.

bibitem{MrdMdls1}

Delavar, M.R. and De La Sen, M.

textit{Some generalizations of Hermite-Hadamard type inequalities},

SpringerPlus, $mathbf{5}$(1661) (2016).

bibitem{dragomiragarwal1123}

Dragomir, S.S. and Agarwal, R.P.,

textit{Two inequalities for differentiable mappings and applications to special means of real numbers and trapezoidal formula},

Appl. Math. Lett., $mathbf{11}$(5) (1998), 91--95.

bibitem{GfAr}

Farid, G. and Rehman, A.U.,

textit{Generalizations of some integral inequalities for fractional integrals},

Ann. Math. Sil., $mathbf{31}$ (2017), 14.

bibitem{KALI2}

Kashuri, A. and Liko, R.,

textit{Some new Hermite-Hadamard type inequalities and their applications}, Stud. Sci. Math. Hung., (2019), In Press.

bibitem{YARM2019}

Khan, M.A., Chu, Y.M., Kashuri, A. and Liko, R.,

textit{Hermite-Hadamard type fractional integral inequalities for $MT_{(r;g,m,phi)}$-preinvex functions}, J. Comput. Anal. Appl., $mathbf{26}$(8) (2019), 1487--1503.

bibitem{Makycakrlga3}

Khan, M.A., Chu, Y.M., Kashuri, A., Liko, R. and Ali, G.,

textit{New Hermite-Hadamard inequalities for conformable fractional integrals},

J. Funct. Spaces, (2018), Article ID 6928130, pp. 9.

bibitem{WJLiu}

Liu, W.J.,

textit{Some Simpson type inequalities for $h$-convex and $(alpha,m)$-convex functions},

J. Comput. Anal. Appl., $mathbf{16}$(5) (2014), 1005--1012.

bibitem{LWPa}

Liu, W., Wen, W. and Park, J.,

textit{Hermite-Hadamard type inequalities for $MT$-convex functions via classical integrals and fractional integrals},

J. Nonlinear Sci. Appl., $mathbf{9}$ (2016), 766--777.

bibitem{Cltdmkakys6}

Luo, C., Du, T.S., Khan, M.A., Kashuri, A. and Shen, Y.,

textit{Some $k$-fractional integrals inequalities through generalized $lambda_{phi m}$-$MT$-preinvexity},

J. Comput. Anal. Appl., $mathbf{27}$(4) (2019), 690--705.

bibitem{MarVMi1}

Mihai, M.V.,

textit{Some Hermite-Hadamard type inequalities via Riemann-Liouville fractional calculus},

Tamkang J. Math, $mathbf{44}$(4) (2013), 411--416.

bibitem{SMGH}

Mubeen, S. and Habibullah, G.M.,

textit{$k$-Fractional integrals and applications},

Int. J. Contemp. Math. Sci., $mathbf{7}$ (2012), 89--94.

bibitem{OOmotoyinbo}

Omotoyinbo, O. and Mogbodemu, A.,

textit{Some new Hermite-Hadamard integral inequalities for convex functions},

Int. J. Sci. Innovation Tech., $mathbf{1}$(1) (2014), 1--12.

bibitem{ozdryi3}

"{O}zdemir, M.E., Dragomir, S.S. and Yildiz, C.,

textit{The Hadamard's inequality for convex function via fractional integrals},

Acta Mathematica Scientia, $mathbf{33}$(5) (2013), 153--164.

bibitem{QiXi}

Qi, F. and Xi, B.Y.,

textit{Some integral inequalities of Simpson type for $GA-epsilon$-convex functions},

Georgian Math. J., $mathbf{20}$(5) (2013), 775--788.

bibitem{MeFa2}

Sarikaya, M.Z. and Ertuu{g}ral, F.,

textit{On the generalized Hermite-Hadamard inequalities}, https://www.researchgate.net/publication/321760443.

bibitem{MeHy02}

Sarikaya, M.Z. and Yildirim, H.,

textit{On generalization of the Riesz potential}, Indian Jour. of Math. and Mathematical

Sci., {bf3}(2), (2007), 231--235.

bibitem{EsMnMaAg1}

Set, E., Noor, M.A., Awan, M.U. and G"{o}zpinar, A.,

textit{Generalized Hermite-Hadamard type inequalities involving fractional integral operators},

J. Inequal. Appl., $mathbf{169}$ (2017), 1--10.

bibitem{HwTdYz2}

Wang, H., Du, T.S. and Zhang, Y.,

textit{$k$-fractional integral trapezium-like inequalities through $(h,m)$-convex and $(alpha,m)$-convex mappings},

J. Inequal. Appl., textbf{2017}(311) (2017), pp. 20.

bibitem{XiQi2}

Xi, B.Y and Qi, F.,

textit{Some integral inequalities of Hermite-Hadamard type for convex functions

with applications to means}, J. Funct. Spaces Appl., $mathbf{2012}$ (2012), Article ID 980438, pp. 14.

bibitem{ZCZ}

Zhang, X.M., Chu, Y.M. and Zhang, X.H.,

textit{The Hermite-Hadamard type inequality of $GA$-convex functions and its applications},

J. Inequal. Appl., (2010), Article ID 507560, pp. 11.

bibitem{YTHYA2018}

Zhang, Y., Du, T.S., Wang, H., Shen, Y.J. and Kashuri, A.,

textit{Extensions of different type parameterized inequalities for generalized $(m,h)$-preinvex mappings via $k$-fractional integrals}, J. Inequal. Appl., $mathbf{2018}$(49) (2018), pp. 30.




DOI: http://dx.doi.org/10.24193/subbmath.2021.3.02

Refbacks

  • There are currently no refbacks.