Different type parameterized inequalities via generalized integral operators with applications
Abstract
Keywords
Full Text:
PDFReferences
bibitem{SaMdSv1}
Aslani, S.M., Delavar, M.R. and Vaezpour, S.M.,
textit{Inequalities of Fej'{e}r type related to generalized convex functions with applications},
Int. J. Anal. Appl., $mathbf{16}$(1) (2018), 38--49.
bibitem{FcSw}
Chen, F.X. and Wu, S.H.,
textit{Several complementary inequalities to inequalities of Hermite-Hadamard type for $s$-convex functions}, J. Nonlinear Sci. Appl., $mathbf{9}$(2) (2016), 705--716.
bibitem{CKKA}
Chu, Y.M., Khan, M.A., Khan, T.U. and Ali, T.,
textit{Generalizations of Hermite-Hadamard type inequalities for $MT$-convex functions},
J. Nonlinear Sci. Appl., $mathbf{9}$(5) (2016), 4305--4316.
bibitem{MrdSsd1}
Delavar, M.R. and Dragomir, S.S.,
textit{On $eta$-convexity},
Math. Inequal. Appl., $mathbf{20}$ (2017), 203--216.
bibitem{MrdMdls1}
Delavar, M.R. and De La Sen, M.
textit{Some generalizations of Hermite-Hadamard type inequalities},
SpringerPlus, $mathbf{5}$(1661) (2016).
bibitem{dragomiragarwal1123}
Dragomir, S.S. and Agarwal, R.P.,
textit{Two inequalities for differentiable mappings and applications to special means of real numbers and trapezoidal formula},
Appl. Math. Lett., $mathbf{11}$(5) (1998), 91--95.
bibitem{GfAr}
Farid, G. and Rehman, A.U.,
textit{Generalizations of some integral inequalities for fractional integrals},
Ann. Math. Sil., $mathbf{31}$ (2017), 14.
bibitem{KALI2}
Kashuri, A. and Liko, R.,
textit{Some new Hermite-Hadamard type inequalities and their applications}, Stud. Sci. Math. Hung., (2019), In Press.
bibitem{YARM2019}
Khan, M.A., Chu, Y.M., Kashuri, A. and Liko, R.,
textit{Hermite-Hadamard type fractional integral inequalities for $MT_{(r;g,m,phi)}$-preinvex functions}, J. Comput. Anal. Appl., $mathbf{26}$(8) (2019), 1487--1503.
bibitem{Makycakrlga3}
Khan, M.A., Chu, Y.M., Kashuri, A., Liko, R. and Ali, G.,
textit{New Hermite-Hadamard inequalities for conformable fractional integrals},
J. Funct. Spaces, (2018), Article ID 6928130, pp. 9.
bibitem{WJLiu}
Liu, W.J.,
textit{Some Simpson type inequalities for $h$-convex and $(alpha,m)$-convex functions},
J. Comput. Anal. Appl., $mathbf{16}$(5) (2014), 1005--1012.
bibitem{LWPa}
Liu, W., Wen, W. and Park, J.,
textit{Hermite-Hadamard type inequalities for $MT$-convex functions via classical integrals and fractional integrals},
J. Nonlinear Sci. Appl., $mathbf{9}$ (2016), 766--777.
bibitem{Cltdmkakys6}
Luo, C., Du, T.S., Khan, M.A., Kashuri, A. and Shen, Y.,
textit{Some $k$-fractional integrals inequalities through generalized $lambda_{phi m}$-$MT$-preinvexity},
J. Comput. Anal. Appl., $mathbf{27}$(4) (2019), 690--705.
bibitem{MarVMi1}
Mihai, M.V.,
textit{Some Hermite-Hadamard type inequalities via Riemann-Liouville fractional calculus},
Tamkang J. Math, $mathbf{44}$(4) (2013), 411--416.
bibitem{SMGH}
Mubeen, S. and Habibullah, G.M.,
textit{$k$-Fractional integrals and applications},
Int. J. Contemp. Math. Sci., $mathbf{7}$ (2012), 89--94.
bibitem{OOmotoyinbo}
Omotoyinbo, O. and Mogbodemu, A.,
textit{Some new Hermite-Hadamard integral inequalities for convex functions},
Int. J. Sci. Innovation Tech., $mathbf{1}$(1) (2014), 1--12.
bibitem{ozdryi3}
"{O}zdemir, M.E., Dragomir, S.S. and Yildiz, C.,
textit{The Hadamard's inequality for convex function via fractional integrals},
Acta Mathematica Scientia, $mathbf{33}$(5) (2013), 153--164.
bibitem{QiXi}
Qi, F. and Xi, B.Y.,
textit{Some integral inequalities of Simpson type for $GA-epsilon$-convex functions},
Georgian Math. J., $mathbf{20}$(5) (2013), 775--788.
bibitem{MeFa2}
Sarikaya, M.Z. and Ertuu{g}ral, F.,
textit{On the generalized Hermite-Hadamard inequalities}, https://www.researchgate.net/publication/321760443.
bibitem{MeHy02}
Sarikaya, M.Z. and Yildirim, H.,
textit{On generalization of the Riesz potential}, Indian Jour. of Math. and Mathematical
Sci., {bf3}(2), (2007), 231--235.
bibitem{EsMnMaAg1}
Set, E., Noor, M.A., Awan, M.U. and G"{o}zpinar, A.,
textit{Generalized Hermite-Hadamard type inequalities involving fractional integral operators},
J. Inequal. Appl., $mathbf{169}$ (2017), 1--10.
bibitem{HwTdYz2}
Wang, H., Du, T.S. and Zhang, Y.,
textit{$k$-fractional integral trapezium-like inequalities through $(h,m)$-convex and $(alpha,m)$-convex mappings},
J. Inequal. Appl., textbf{2017}(311) (2017), pp. 20.
bibitem{XiQi2}
Xi, B.Y and Qi, F.,
textit{Some integral inequalities of Hermite-Hadamard type for convex functions
with applications to means}, J. Funct. Spaces Appl., $mathbf{2012}$ (2012), Article ID 980438, pp. 14.
bibitem{ZCZ}
Zhang, X.M., Chu, Y.M. and Zhang, X.H.,
textit{The Hermite-Hadamard type inequality of $GA$-convex functions and its applications},
J. Inequal. Appl., (2010), Article ID 507560, pp. 11.
bibitem{YTHYA2018}
Zhang, Y., Du, T.S., Wang, H., Shen, Y.J. and Kashuri, A.,
textit{Extensions of different type parameterized inequalities for generalized $(m,h)$-preinvex mappings via $k$-fractional integrals}, J. Inequal. Appl., $mathbf{2018}$(49) (2018), pp. 30.
DOI: http://dx.doi.org/10.24193/subbmath.2021.3.02
Refbacks
- There are currently no refbacks.