Statistical Korovkin and Voronovskaya type theorem for the Cesaro second order operator of fuzzy numbers

Naim Braha, Valdete Loku

Abstract



In this paper we define the Ces\'aro second order summability method for fuzzy numbers and prove Korovkin type theorem, then as application of it we prove rate of convergence. In the last section we prove kind of Voronovskaya type theorem and give some concluding remarks related to the obtained results.


Full Text:

PDF

References


bibitem{A} G.A. Anastassiou, On basic fuzzy Korovkin theory, Studia Universitatis Babes-Bolyai Mathematica 50 (2005) 3-10.

bibitem{AD} G.A. Anastassiou, O. Duman, Statistical fuzzy approximation by fuzzy positive linear operators, Computers and Mathematics

with Applications 55 (2008) 573-580.

bibitem{A1} Anastassiou, George A. Rate of convergence of fuzzy neural network operators, univariate case. J. Fuzzy Math. 10 (2002), no. 3, 755-780.

bibitem{AMA} Y. Altin, M. Mursaleen, H. Altinok, Statistical summability $(C,1)$ for sequences of fuzzy real numbers and a Tauberian theorem, Journal of Intelligent and Fuzzy Systems 21 (2010) 379-384.

bibitem{BD} B. Bede and S. G. Gal, Almost periodic fuzzy number valued functions, Fuzzy Sets and Systems 147 (2004), 385-403.

bibitem{B1} Braha, Naim L. Geometric properties of the second-order Ces'aro spaces. Banach J. Math. Anal. 10 (2016), no. 1, 1-14.

bibitem{B3} Braha, Naim L. Some weighted equi-statistical convergence and Korovkin type-theorem. Results Math. 70 (2016), no. 3-4, 433-446.

bibitem{BLS} Braha, Naim L.; Loku, Valdete; Srivastava, H. M. $Lambdasp 2$-weighted statistical convergence and Korovkin and Voronovskaya type theorems. Appl. Math. Comput. 266 (2015), 675-686.

bibitem{BSM} Braha, Naim L.; Srivastava, H. M.; Mohiuddine, S. A. A Korovkin's type approximation theorem for periodic functions via the statistical summability of the generalized de la Vallee Poussin mean. Appl. Math. Comput. 228 (2014), 162-169

bibitem{F}H. Fast, Sur la convergence statistique, Colloq. Math. 2 (1951) 241-244.

bibitem{KBS} U. Kadak, N. L. Braha and H. M. Srivastava, Statistical Weighted $mathcal B$-Summability and Its Applications to Approximation Theorems, Appl. Math. Comput. 302 (2017), 80-96.

bibitem{LB} V. Loku, N. L. Braha, Some weighted statistical convergence and Korovkin type-theorem, J. Inequal. Spec. Funct. 8 (2017), no. 3, 139-150.

bibitem{MA} M. Matloka, Sequence of fuzzy numbers, BUSEFAL 28 (1986), 28-37.

bibitem{N} S. Nanda, On sequence of fuzzy numbers, Fuzzy Sets and Systems 33 (1989), 123-126.

bibitem{PR} Puri, Madan L.; Ralescu, Dan A. Differentials of fuzzy functions. J. Math. Anal. Appl. 91 (1983), no. 2, 552-558.

bibitem{Z} L. A. Zadeh, Fuzzy sets, Information and Control 8 (1965),

-353.




DOI: http://dx.doi.org/10.24193/ubbmath.2020.4.06

Refbacks

  • There are currently no refbacks.