On oscillatory second-order nonlinear impulsive systems of neutral type

Arun Kumar Tripathy, Shyam Sundar Santra

Abstract


In this work, the necessary and sufficient conditions for oscillation of a class of second order neutral impulsive systems are established and our impulse satisfies a discrete neutral nonlinear equation of similar type. Further, one illustrative example showing the applicability of the new result is included.

Keywords


Oscillation; nonoscillation; neutral; delay; non-linear; Lebesgue's dominated convergence theorem; Banach's fixed point theorem

Full Text:

PDF

References


bibitem{Bainov1}

D. D. Bainov, P. S. Simeonov; emph{Systems with Impulse Effect:

Stability, Theory and Applications,} Ellis Horwood, Chichester,

bibitem{Bainov2}

D. D. Bainov, P. S. Simeonov; emph{Theory of Impulsive

Differential Equations: Asymptotic Properties of the Solutions and

Applications,} World Scientific Publishers, Singapore, 1995.

bibitem{Bainov3}

D. D. Bainov, M. B. Dimitrova; emph{Oscillation of sub and super

linear impulsive differential equations with constant delay,}

Applicable Analysis., {bf 64} (1997) 57--67.

bibitem{Bonotto}

E. M. Bonotto, L. P. Gimenes, M. Federson; emph{Oscillation for a

second order neutral differential equation with impulses,} Appl.

Math. Compu., {bf 215} (2009) 1--15.

bibitem{Dimitrova}

M. B. Dimitrova; emph{Oscillation criteria for the solutions of

nonlinear delay differential equations of second order with

impulse effect,} Int. J. Pure and Appl. Math., {bf 72} (2011) 439--451.

bibitem{Domoshnitsky}

A. Domoshnitsky, G. Landsman, S. Yanetz; emph{About

sign-constancy of green's functions for impulsive second order

delay equations,} Opuscula Math., {bf 34}(2) (2014) 339--362.

bibitem{Gyori}

I. Gyori, G. Ladas; emph{Oscillation Theory of Delay Differential

Equations with Applications,} Clarendon Press, Oxford, 1991.

bibitem{Gimenes}

L. P. Gimenes, M. Federson; emph{Oscillation by impulses for a

second order delay differential equations,} Cadernos De

Matematica., {bf 6} (2005) 181--191.

bibitem{Graef1}

J. R. Graef, M. K. Grammatikopoulos; emph{On the behaviour of a

first order nonlinear neutral delay differential equations,}

Applicable Anal., {bf 40} (1991) 111--121.

bibitem{Graef2}

J. R. Graef, J. H. Shen, I. P. Stavroulakis; emph{Oscillation of

impulsive neutral delay differential equations,} J. Math. Anal.

Appl., {bf 268} (2002) 310--333.

bibitem{He}

Z. M. He, W. Ge; emph{Oscillation in second order linear delay

differential equation with nonlinear impulses,} Mathematica

Slovaca., {bf 52} (2002) 331--341.

bibitem{Jiang}

G. R. Jiang, Q. S. Lu; emph{Impulsive state feedback control of a

prey-predator model,} J. Compu. Appl. Math., {bf 200} (2007) 193--207.

bibitem{Ladde}

G. S. Ladde, V. Lakshmikantham, B. G. Zhang; emph{Oscillation

Theory of Differential Equations with Deviating Arguments,} Pure

and Applied Mathematics., {bf 110} 1987, Marcel Dekker.

bibitem{Lakshmikantham}

V. Lakshmikantham, D. D. Bainov, P. S. Simieonov;

emph{Oscillation Theory of Impulsive Differential Equations,}

World Scientific, Singapore, 1989.

bibitem{Liu}

X. Liu, G. Ballinger; emph{Existence and continuability of

solutions for differential equations with delays and

state-dependent impulses,} Nonlin. Anal., {bf 51} (2002) 633--647.

bibitem{Luo1}

W. Luo, J. Luo, L. Debnath; emph{Oscillation of second order

quasilinear delay differential equations with impulses,} J. Appl.

Math. Comp., {bf 13} (2003) 165--182.

bibitem{Luo2}

Z. Luo, J. Shen; emph{Oscillation of second order linear

differential equation with impulses,} Appl. Math. Lett., {bf 20} (2007) 75--81.

bibitem{Pandit}

S. G. Pandit, S. G. Deo; emph{Differential Systems Involving

Impulses,} Lect. Notes in Math., {bf 954} 1982, Springer-Verlag, New

York.

bibitem{Qian}

L. Qian, Q. Lu, Q. Meng, Z. Feng; emph{ Dynamical behaviours of a

prey-predator system with impulsive control,} J. Math. Anal.

Appl., {bf 363} (2010) 345--356.

bibitem{Shen}

J. Shen, Y. Liu; emph{Asymptotic behaviour of solutions for

nonlinear delay differential equation with impulses,} Appl. Math.

Compu., {bf 213} (2009) 449--454.

bibitem{sss0}

S. S. Santra; emph{Oscillation criteria for nonlinear neutral differential equations of first order with several delays,} Mathematica (Cluj)-{bf 57} (80)(1-2): (2015), 75--89.

bibitem{sss00}

S. S. Santra; emph{Necessary and sufficient condition for oscillation of nonlinear neutral first order differential equations with several delays,} Mathematica (Cluj), {bf 58}(81)(1-2): (2016), 85--94.

bibitem{sss000}

S. S. Santra; emph{Oscillation analysis for nonlinear neutral differential equations of second order with several delays,} Mathematica (Cluj), {bf 59}(82)(1-2): (2017), 111--123.

bibitem{sss0000}

S. S. Santra; emph{Oscillation analysis for nonlinear neutral differential equations of second order with several delays and forcing term,} Mathematica (Cluj). (in press)

bibitem{sss1}

S. S. Santra, A. K. Tripathy; emph{Oscillation of unforced impulsive neutral

delay differential equations of first order,} Commu. Appl. Anal., {bf 22}(4): (2018), 567--582.

bibitem{sss2}

S. S. Santra, A. K. Tripathy; emph{On oscillatory first order nonlinear neutral differential equations with nonlinear impulses,} J. Appl. Math. Comput., (DOI: https://doi.org/10.1007/s12190-018-1178-8) (in press)

bibitem{Thandapani}

E. Thandapani, R. Sakthivel, E. Chandrasekaran; emph{Oscillation

of second order nonlinear impulsive differential equations with

deviating arguments,} Diff. Equ. Appl., (4) (2012) 571--580.

bibitem{AKT1}

A. K. Tripathy; emph{Oscillation criteria for a class of first

order neutral impulsive differential-difference equations,} J.

Appl. Anal. Compu., {bf 4} (2014) 89--101.

bibitem{AKT2}

A. K. Tripathy, S. S. Santra; emph{Necessary and sufficient

conditions for oscillation of a class of first order impulsive

differential equations,} Func. Diff, Equ., {bf 22}(3-4) (2015) 149--167.

bibitem{AKT3}

A. K. Tripathy, S. S. Santra; emph{Pulsatile constant and

characterisation of first order neutral impulsive differential

equations,} Commu. Appl. Anal., {bf 20} (2016) 65--76.

bibitem{AKT4}

A. K. Tripathy, S. S. Santra; emph{Characterization of a class of second order neutral impulsive systems via pulsatile constant,} Diff. Equ. Appl., {bf 9}(1): (2017), 87--98.

bibitem{Xiu-li 1}

W. Xiu-li, C. Si-yang, T. Hong-ji; emph {Osillation of a class of

second order delay differential equation with impulses,} Appl.

Math. Comp., {bf 145} (2003) 561--567.

bibitem{Xiu-li 2}

W. Xiu-li, C. Si-yang, T. Hong-ji; emph {Osillation of a class of

second order nonlinear ODE with impulses,} Appl. Math. Comp.,

{bf 138} (2003) 181--188.

bibitem{Yan}

J. Yan; emph{Oscillation properties of a second order impulsive

delay differential equations,} Compu. Math. Appl., {bf 47} (2004) 253--258.




DOI: http://dx.doi.org/10.24193/subbmath.2020.4.03

Refbacks

  • There are currently no refbacks.