On oscillatory second-order nonlinear impulsive systems of neutral type
Abstract
Keywords
Full Text:
PDFReferences
bibitem{Bainov1}
D. D. Bainov, P. S. Simeonov; emph{Systems with Impulse Effect:
Stability, Theory and Applications,} Ellis Horwood, Chichester,
bibitem{Bainov2}
D. D. Bainov, P. S. Simeonov; emph{Theory of Impulsive
Differential Equations: Asymptotic Properties of the Solutions and
Applications,} World Scientific Publishers, Singapore, 1995.
bibitem{Bainov3}
D. D. Bainov, M. B. Dimitrova; emph{Oscillation of sub and super
linear impulsive differential equations with constant delay,}
Applicable Analysis., {bf 64} (1997) 57--67.
bibitem{Bonotto}
E. M. Bonotto, L. P. Gimenes, M. Federson; emph{Oscillation for a
second order neutral differential equation with impulses,} Appl.
Math. Compu., {bf 215} (2009) 1--15.
bibitem{Dimitrova}
M. B. Dimitrova; emph{Oscillation criteria for the solutions of
nonlinear delay differential equations of second order with
impulse effect,} Int. J. Pure and Appl. Math., {bf 72} (2011) 439--451.
bibitem{Domoshnitsky}
A. Domoshnitsky, G. Landsman, S. Yanetz; emph{About
sign-constancy of green's functions for impulsive second order
delay equations,} Opuscula Math., {bf 34}(2) (2014) 339--362.
bibitem{Gyori}
I. Gyori, G. Ladas; emph{Oscillation Theory of Delay Differential
Equations with Applications,} Clarendon Press, Oxford, 1991.
bibitem{Gimenes}
L. P. Gimenes, M. Federson; emph{Oscillation by impulses for a
second order delay differential equations,} Cadernos De
Matematica., {bf 6} (2005) 181--191.
bibitem{Graef1}
J. R. Graef, M. K. Grammatikopoulos; emph{On the behaviour of a
first order nonlinear neutral delay differential equations,}
Applicable Anal., {bf 40} (1991) 111--121.
bibitem{Graef2}
J. R. Graef, J. H. Shen, I. P. Stavroulakis; emph{Oscillation of
impulsive neutral delay differential equations,} J. Math. Anal.
Appl., {bf 268} (2002) 310--333.
bibitem{He}
Z. M. He, W. Ge; emph{Oscillation in second order linear delay
differential equation with nonlinear impulses,} Mathematica
Slovaca., {bf 52} (2002) 331--341.
bibitem{Jiang}
G. R. Jiang, Q. S. Lu; emph{Impulsive state feedback control of a
prey-predator model,} J. Compu. Appl. Math., {bf 200} (2007) 193--207.
bibitem{Ladde}
G. S. Ladde, V. Lakshmikantham, B. G. Zhang; emph{Oscillation
Theory of Differential Equations with Deviating Arguments,} Pure
and Applied Mathematics., {bf 110} 1987, Marcel Dekker.
bibitem{Lakshmikantham}
V. Lakshmikantham, D. D. Bainov, P. S. Simieonov;
emph{Oscillation Theory of Impulsive Differential Equations,}
World Scientific, Singapore, 1989.
bibitem{Liu}
X. Liu, G. Ballinger; emph{Existence and continuability of
solutions for differential equations with delays and
state-dependent impulses,} Nonlin. Anal., {bf 51} (2002) 633--647.
bibitem{Luo1}
W. Luo, J. Luo, L. Debnath; emph{Oscillation of second order
quasilinear delay differential equations with impulses,} J. Appl.
Math. Comp., {bf 13} (2003) 165--182.
bibitem{Luo2}
Z. Luo, J. Shen; emph{Oscillation of second order linear
differential equation with impulses,} Appl. Math. Lett., {bf 20} (2007) 75--81.
bibitem{Pandit}
S. G. Pandit, S. G. Deo; emph{Differential Systems Involving
Impulses,} Lect. Notes in Math., {bf 954} 1982, Springer-Verlag, New
York.
bibitem{Qian}
L. Qian, Q. Lu, Q. Meng, Z. Feng; emph{ Dynamical behaviours of a
prey-predator system with impulsive control,} J. Math. Anal.
Appl., {bf 363} (2010) 345--356.
bibitem{Shen}
J. Shen, Y. Liu; emph{Asymptotic behaviour of solutions for
nonlinear delay differential equation with impulses,} Appl. Math.
Compu., {bf 213} (2009) 449--454.
bibitem{sss0}
S. S. Santra; emph{Oscillation criteria for nonlinear neutral differential equations of first order with several delays,} Mathematica (Cluj)-{bf 57} (80)(1-2): (2015), 75--89.
bibitem{sss00}
S. S. Santra; emph{Necessary and sufficient condition for oscillation of nonlinear neutral first order differential equations with several delays,} Mathematica (Cluj), {bf 58}(81)(1-2): (2016), 85--94.
bibitem{sss000}
S. S. Santra; emph{Oscillation analysis for nonlinear neutral differential equations of second order with several delays,} Mathematica (Cluj), {bf 59}(82)(1-2): (2017), 111--123.
bibitem{sss0000}
S. S. Santra; emph{Oscillation analysis for nonlinear neutral differential equations of second order with several delays and forcing term,} Mathematica (Cluj). (in press)
bibitem{sss1}
S. S. Santra, A. K. Tripathy; emph{Oscillation of unforced impulsive neutral
delay differential equations of first order,} Commu. Appl. Anal., {bf 22}(4): (2018), 567--582.
bibitem{sss2}
S. S. Santra, A. K. Tripathy; emph{On oscillatory first order nonlinear neutral differential equations with nonlinear impulses,} J. Appl. Math. Comput., (DOI: https://doi.org/10.1007/s12190-018-1178-8) (in press)
bibitem{Thandapani}
E. Thandapani, R. Sakthivel, E. Chandrasekaran; emph{Oscillation
of second order nonlinear impulsive differential equations with
deviating arguments,} Diff. Equ. Appl., (4) (2012) 571--580.
bibitem{AKT1}
A. K. Tripathy; emph{Oscillation criteria for a class of first
order neutral impulsive differential-difference equations,} J.
Appl. Anal. Compu., {bf 4} (2014) 89--101.
bibitem{AKT2}
A. K. Tripathy, S. S. Santra; emph{Necessary and sufficient
conditions for oscillation of a class of first order impulsive
differential equations,} Func. Diff, Equ., {bf 22}(3-4) (2015) 149--167.
bibitem{AKT3}
A. K. Tripathy, S. S. Santra; emph{Pulsatile constant and
characterisation of first order neutral impulsive differential
equations,} Commu. Appl. Anal., {bf 20} (2016) 65--76.
bibitem{AKT4}
A. K. Tripathy, S. S. Santra; emph{Characterization of a class of second order neutral impulsive systems via pulsatile constant,} Diff. Equ. Appl., {bf 9}(1): (2017), 87--98.
bibitem{Xiu-li 1}
W. Xiu-li, C. Si-yang, T. Hong-ji; emph {Osillation of a class of
second order delay differential equation with impulses,} Appl.
Math. Comp., {bf 145} (2003) 561--567.
bibitem{Xiu-li 2}
W. Xiu-li, C. Si-yang, T. Hong-ji; emph {Osillation of a class of
second order nonlinear ODE with impulses,} Appl. Math. Comp.,
{bf 138} (2003) 181--188.
bibitem{Yan}
J. Yan; emph{Oscillation properties of a second order impulsive
delay differential equations,} Compu. Math. Appl., {bf 47} (2004) 253--258.
DOI: http://dx.doi.org/10.24193/subbmath.2020.4.03
Refbacks
- There are currently no refbacks.