On oscillatory second-order nonlinear impulsive systems of neutral type
DOI:
https://doi.org/10.24193/subbmath.2020.4.03Keywords:
Oscillation, nonoscillation, neutral, delay, non-linear, Lebesgue's dominated convergence theorem, Banach's fixed point theoremAbstract
In this work, the necessary and sufficient conditions for oscillation of a class of second order neutral impulsive systems are established and our impulse satisfies a discrete neutral nonlinear equation of similar type. Further, one illustrative example showing the applicability of the new result is included.References
bibitem{Bainov1}
D. D. Bainov, P. S. Simeonov; emph{Systems with Impulse Effect:
Stability, Theory and Applications,} Ellis Horwood, Chichester,
bibitem{Bainov2}
D. D. Bainov, P. S. Simeonov; emph{Theory of Impulsive
Differential Equations: Asymptotic Properties of the Solutions and
Applications,} World Scientific Publishers, Singapore, 1995.
bibitem{Bainov3}
D. D. Bainov, M. B. Dimitrova; emph{Oscillation of sub and super
linear impulsive differential equations with constant delay,}
Applicable Analysis., {bf 64} (1997) 57--67.
bibitem{Bonotto}
E. M. Bonotto, L. P. Gimenes, M. Federson; emph{Oscillation for a
second order neutral differential equation with impulses,} Appl.
Math. Compu., {bf 215} (2009) 1--15.
bibitem{Dimitrova}
M. B. Dimitrova; emph{Oscillation criteria for the solutions of
nonlinear delay differential equations of second order with
impulse effect,} Int. J. Pure and Appl. Math., {bf 72} (2011) 439--451.
bibitem{Domoshnitsky}
A. Domoshnitsky, G. Landsman, S. Yanetz; emph{About
sign-constancy of green's functions for impulsive second order
delay equations,} Opuscula Math., {bf 34}(2) (2014) 339--362.
bibitem{Gyori}
I. Gyori, G. Ladas; emph{Oscillation Theory of Delay Differential
Equations with Applications,} Clarendon Press, Oxford, 1991.
bibitem{Gimenes}
L. P. Gimenes, M. Federson; emph{Oscillation by impulses for a
second order delay differential equations,} Cadernos De
Matematica., {bf 6} (2005) 181--191.
bibitem{Graef1}
J. R. Graef, M. K. Grammatikopoulos; emph{On the behaviour of a
first order nonlinear neutral delay differential equations,}
Applicable Anal., {bf 40} (1991) 111--121.
bibitem{Graef2}
J. R. Graef, J. H. Shen, I. P. Stavroulakis; emph{Oscillation of
impulsive neutral delay differential equations,} J. Math. Anal.
Appl., {bf 268} (2002) 310--333.
bibitem{He}
Z. M. He, W. Ge; emph{Oscillation in second order linear delay
differential equation with nonlinear impulses,} Mathematica
Slovaca., {bf 52} (2002) 331--341.
bibitem{Jiang}
G. R. Jiang, Q. S. Lu; emph{Impulsive state feedback control of a
prey-predator model,} J. Compu. Appl. Math., {bf 200} (2007) 193--207.
bibitem{Ladde}
G. S. Ladde, V. Lakshmikantham, B. G. Zhang; emph{Oscillation
Theory of Differential Equations with Deviating Arguments,} Pure
and Applied Mathematics., {bf 110} 1987, Marcel Dekker.
bibitem{Lakshmikantham}
V. Lakshmikantham, D. D. Bainov, P. S. Simieonov;
emph{Oscillation Theory of Impulsive Differential Equations,}
World Scientific, Singapore, 1989.
bibitem{Liu}
X. Liu, G. Ballinger; emph{Existence and continuability of
solutions for differential equations with delays and
state-dependent impulses,} Nonlin. Anal., {bf 51} (2002) 633--647.
bibitem{Luo1}
W. Luo, J. Luo, L. Debnath; emph{Oscillation of second order
quasilinear delay differential equations with impulses,} J. Appl.
Math. Comp., {bf 13} (2003) 165--182.
bibitem{Luo2}
Z. Luo, J. Shen; emph{Oscillation of second order linear
differential equation with impulses,} Appl. Math. Lett., {bf 20} (2007) 75--81.
bibitem{Pandit}
S. G. Pandit, S. G. Deo; emph{Differential Systems Involving
Impulses,} Lect. Notes in Math., {bf 954} 1982, Springer-Verlag, New
York.
bibitem{Qian}
L. Qian, Q. Lu, Q. Meng, Z. Feng; emph{ Dynamical behaviours of a
prey-predator system with impulsive control,} J. Math. Anal.
Appl., {bf 363} (2010) 345--356.
bibitem{Shen}
J. Shen, Y. Liu; emph{Asymptotic behaviour of solutions for
nonlinear delay differential equation with impulses,} Appl. Math.
Compu., {bf 213} (2009) 449--454.
bibitem{sss0}
S. S. Santra; emph{Oscillation criteria for nonlinear neutral differential equations of first order with several delays,} Mathematica (Cluj)-{bf 57} (80)(1-2): (2015), 75--89.
bibitem{sss00}
S. S. Santra; emph{Necessary and sufficient condition for oscillation of nonlinear neutral first order differential equations with several delays,} Mathematica (Cluj), {bf 58}(81)(1-2): (2016), 85--94.
bibitem{sss000}
S. S. Santra; emph{Oscillation analysis for nonlinear neutral differential equations of second order with several delays,} Mathematica (Cluj), {bf 59}(82)(1-2): (2017), 111--123.
bibitem{sss0000}
S. S. Santra; emph{Oscillation analysis for nonlinear neutral differential equations of second order with several delays and forcing term,} Mathematica (Cluj). (in press)
bibitem{sss1}
S. S. Santra, A. K. Tripathy; emph{Oscillation of unforced impulsive neutral
delay differential equations of first order,} Commu. Appl. Anal., {bf 22}(4): (2018), 567--582.
bibitem{sss2}
S. S. Santra, A. K. Tripathy; emph{On oscillatory first order nonlinear neutral differential equations with nonlinear impulses,} J. Appl. Math. Comput., (DOI: https://doi.org/10.1007/s12190-018-1178-8) (in press)
bibitem{Thandapani}
E. Thandapani, R. Sakthivel, E. Chandrasekaran; emph{Oscillation
of second order nonlinear impulsive differential equations with
deviating arguments,} Diff. Equ. Appl., (4) (2012) 571--580.
bibitem{AKT1}
A. K. Tripathy; emph{Oscillation criteria for a class of first
order neutral impulsive differential-difference equations,} J.
Appl. Anal. Compu., {bf 4} (2014) 89--101.
bibitem{AKT2}
A. K. Tripathy, S. S. Santra; emph{Necessary and sufficient
conditions for oscillation of a class of first order impulsive
differential equations,} Func. Diff, Equ., {bf 22}(3-4) (2015) 149--167.
bibitem{AKT3}
A. K. Tripathy, S. S. Santra; emph{Pulsatile constant and
characterisation of first order neutral impulsive differential
equations,} Commu. Appl. Anal., {bf 20} (2016) 65--76.
bibitem{AKT4}
A. K. Tripathy, S. S. Santra; emph{Characterization of a class of second order neutral impulsive systems via pulsatile constant,} Diff. Equ. Appl., {bf 9}(1): (2017), 87--98.
bibitem{Xiu-li 1}
W. Xiu-li, C. Si-yang, T. Hong-ji; emph {Osillation of a class of
second order delay differential equation with impulses,} Appl.
Math. Comp., {bf 145} (2003) 561--567.
bibitem{Xiu-li 2}
W. Xiu-li, C. Si-yang, T. Hong-ji; emph {Osillation of a class of
second order nonlinear ODE with impulses,} Appl. Math. Comp.,
{bf 138} (2003) 181--188.
bibitem{Yan}
J. Yan; emph{Oscillation properties of a second order impulsive
delay differential equations,} Compu. Math. Appl., {bf 47} (2004) 253--258.
Downloads
Published
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Transfer of copyright agreement: When the article is accepted for publication, the authors and the representative of the coauthors, hereby agree to transfer to Studia Universitatis Babeș-Bolyai Mathematica all rights, including those pertaining to electronic forms and transmissions, under existing copyright laws, except for the following, which the authors specifically retain: the authors can use the material however they want as long as it fits the NC ND terms of the license. The authors have all rights for reuse according to the license.