Iterates of positive linear operators on Bauer simplices

Madalina Dancs, Sever Hodis

Abstract


We consider positive linear operators acting on C(K), where
K is a metrizable Bauer simplex. For such an operator L we investigate
the limit of the iterates Lm, when m → ∞ . Qualitative results and
rates of convergence are obtained. The general results are illustrated by
examples involving classical operators.


Keywords


Bauer simplex, positive linear operators, iterates, convergence

Full Text:

PDF

References


O Agratini, On the iterates of a class of summation-type linear positive operators, Comput. Math. Appl. 55 (2008) 1178-1180.

O. Agratini, On some Bernstein type operators: iterates and generalizations, East J. Approx. 9 (2003) 415-426.

O Agratini, I.A. Rus, Iterates of a class of discrete linear operators via contraction principle, Comment. Math. Univ. Carolin. 44 (3) (2003) 555-563.

O. Agratini, I.A. Rus, Iterates of some bivariate approximation process via weakly Picard operators, Nonlinear Anal. Forum 8 (2003) 159-168.

E. Alfsen, Compact Convex Sets and Boundary Integrals, Springer 1971.

F. Altomare, On some convergence criteria for nets of positive operators on continuous function spaces, J. Math. Anal. Appl. 398, 2013, 542-552.

F. Altomare, M. Campiti, Korovkin-type Approximation Theory and its Applications, Walter de Gruyter, Berlin, New York, 1994.

F. Altomare, M. Cappelletti Montano, V. Leonessa, and I. Rasa, Markov Operators, Positive Semigroups and Approximation Processes, De Gruyter Studies in Mathematics, Vol. 61, 2014.

C. Badea, Bernstein polynomials and Operator Theory, Results Math., 53(2009), pp. 229-236.

M. M. Birou, New rates of convergence for the iterates of some positive linear operators, Mediterr. J. Math. (2017) 14:129.

S.G. Gal, Voronovskaja's theorem and iterations for complex Bernstein polynomials in compact disks, Mediterr. J. Math. 5 (3) (2008) 253-272.

I. Gavrea, M. Ivan, On the iterates of positive linear operators, J. Approx. Theory 163 (2011) 1076-1079.

I. Gavrea, M. Ivan, On the iterates of positive linear operators preserving the affne functions, J. Math. Anal. Appl. 372 (2010) 366-368.

I. Gavrea, M. Ivan, The iterates of positive linear operators preserving the constants, Appl. Math. Lett. 24(12) (2011) 2068-2071.

I. Gavrea, M. Ivan, Asymptotic behaviour of the iterates of positive linear operators, Abstr. Appl. Anal., (2011). Article ID 670509.

H. Gonska, D. Kacso, P. Pitul, The degree of convergence of over-iterated positive linear operators, J. Appl. Funct. Anal. 1 (2006) 403-423.

H. Gonska, I. Rasa, The limiting semigroup of the Bernstein iterates: degree of convergence, Acta Math. Hungar. 111 (2006)

-130.

H. Gonska, I. Rasa, On innite products of positive linear operators reproducing linear functions, Positivity 17 (2013), no. 1, 67-79.

T.N.T. Goodman, A. Sharma, A Bernstein type operator on the simplex, Math. Balkanica 5 (1991), 129-145.

N.I. Mahmudov, Asymptotic properties of iterates of certain positive linear operators, Math. Comput. Model. 57 (2013) 1480-1488.

N.I. Mahmudov, Asymptotic properties of powers of linear positive operators which preserve e2, Comput. Math. Appl. 62 (2011) 4568-4575.

N.I. Mahmudov, Korovkin type theorem for iterates of certain positive linear operators, arXiv:1103.2918v1.

C.A. Micchelli, The saturation class and iterates of the Bernstein polynomials, J. Approx. Theory 8 (1973) 1-18.

S. Ostrovska, q-Bernstein polynomials and their iterates, J. Approx. Theory 123 (2003) 232-255.

R.R. Phelps, Lectures on Choquet's Theorem, Springer 2001.

I. Rasa, Sets on which concave functions are affne and Korovkin closures, Anal. Numer. Theor. Approx.15 (1986), no. 2, 163-165.

I. Rasa, On some results of C. A. Micchelli, Anal. Numer. Theor. Approx. 9(1980), no. 1, 125-127.

I. Rasa, C0-semigroups and iterates of positive linear operators: asymptotic behaviour, Rend. Circ. Mat. Palermo (2) Suppl. No. 82 (2010), 123-142.

I. Rasa, Asymptotic behaviour of iterates of positive linear operators, Jaen J. Approx. 1 (2009), no. 2,195-204.

I.A. Rus, Picard operators and applications, Sci. Math. Japon. 58 (1) (2003) 191-219.

I.A. Rus, Iterates of Stancu operators, via contraction principle, Studia Univ. Babes-Bolyai Math. 47 (4) (2002) 101-104.

I.A. Rus, Iterates of Stancu operators (via xed point principles) revisited, Fixed Point Theory 11 (2) (2010) 369-374.

I.A. Rus, Iterates of Bernstein operators, via contraction principle, J. Math. Anal. Appl. 292 (2004) 259-261.

T. Sauer, The Genuine Bernstein-Durrmeyer operator on a simplex, Results Math. 26 (12) (1994) 99-130.

Sh. Waldron, A generalised beta integral and the limit of the

Bernstein-Durrmeyer operator with Jacobi weights, J. Approx. Theory

(2003) 141-150.




DOI: http://dx.doi.org/10.24193/subbmath.2019.3.04

Refbacks

  • There are currently no refbacks.