Quantitative results for the convergence of the iterates of some King type operators

Marius-Mihai Birou

Abstract


In this article we construct three \textit{q}-King type operators which fix the functions $e_0$ and $e_2+\alpha e_1$, $\alpha>0$. We study the rates of convergence for the iterates of these operators using the first and the second order modulus of continuity. We show that the convergence is faster in the case of \textit{q} operators ($q<1$) than in the classical case ($q=1$).

Keywords


King type operators; \textit{q}-operators; convergence; modulus of smoothness

Full Text:

PDF

References


Altomare, F., Cappelletti Montano, M., Leonessa, V., Rasa, I., Markov operators, positive semigroups and approximation process, De Gruyter Studies in Mathematics, Vol. 61 (2015).

Birou, M.M., New Rates of Convergence for the Iterates of Some Positive Linear Operators, Mediterr. J. Math, 14(2017), Issue: 3, Article Number: UNSP 129.

Birou, M.M., New quantitative results for the convergence of the iterates of some positive linear operators, Positivity, DOI https://doi.org/10.1007/s11117-018-0608-z.

Cardenas-Morales, D., Garrancho, P., Mu~noz-Delgado, F.J., Shape preserving approximation by Bernstein-type operators which fix polynomials, Appl. Math.Comput., 182(2006), no. 2, 1615-1622.

Gavrea, I., Ivan, M., Asymptotic behaviour of the iterates of positive linear operators, Abstr. Appl. Anal., 2011, Art. ID 670509, 11 pp.

Gonska, H., Rasa, I., On infinite products of positive linear operators reproducing linear functions, Positivity, 17(2013), 67-79.

King, J.P, Positive linear operators which preserve x^2, Acta Math. Hungar., 99(2003), no. 3, 203-208.

Mahmudov, N.I., Asymptotic properties of powers of linear positive operators which preserve e^2, Comput. Math. Appl., 62(2011), 4568-4575.

Mahmudov, N.I., Sabancigil, P., On genuine q-Bernstein-Durrmeyer operators, Publ. Math. Debrecen, 76(2010), no. 4, 221-229.

Nowak, G., Approximation properties for generalized q-Bernstein polynomials, J. Math. Anal. Appl., 350(2009), 50-55.

Philips, G.M., Bernstein polynomial based on q-integers, Ann. Numer. Math., 4(1997), 511-518.

Rasa, I., C0-semigroups and iterates of positive linear operators: asymptotic behaviour, Rend. Circ. Mat. Palermo, Ser. II, Suppl., 82(2010), 1-20.

Stancu, D.D., Approximation of functions by a new class of linear polynomial operators, Rev. Roum. Math. Pures Appl., 13(1968), no. 8, 1173-1194.




DOI: http://dx.doi.org/10.24193/subbmath.2019.2.04

Refbacks

  • There are currently no refbacks.