Finite difference scheme for a high order nonlinear Schrödinger equation with localized damping

Authors

  • Marcelo M. Cavalcanti Departamento de Matemática, Universidade Estadual de Maringá.
  • Wellington J. Corrêa. Departamento Acadêmico de Matemática, Universidade Tecnológica Federal do Paraná.
  • Mauricio Sepúlveda C. Centro de Investigación en Ingeniería Matemática (CI²MA) and Departamento de Ingeniería Matemática, Universidad de Concepción.
  • Rodrigo Véjar Asem Centro de Investigación en Ingeniería Matemática (CI²MA) and Departamento de Ingeniería Matemática, Universidad de Concepción.

DOI:

https://doi.org/10.24193/subbmath.2019.2.03

Keywords:

HNLS, Soliton Theory, Localized damping, Finite Difference Methods.

Abstract

In this work we present a finite difference scheme used to solve
a High order Nonlinear Schrödinger Equation with localized damping.
These equations can model the propagation of solitons travelling in fiber
optics ([3], [10]). The scheme is designed to preserve the numerical en-
ergy at L 2 level, and control the energy at H 1 level for a suitable choose
on the equation’s parameters, and when there is no damping in effect.
Numerical results will be shown.

References

M. J. Ablowitz, H. Segur. Solitons and the Inverse Scattering Transform.

SIAM, 1981.

M. Alves, M. Sepúlveda, O. Vera. Smoothing properties for the higher-order nonlinear Schrödinger equation with constant coefficients. Nonlinear Anal., 71 (2009), 948-966.

D. Anderson, M. Lisak. Nonlinear asymmetric self-phase modulation and self-steepening of pulses in long optical waveguides. Phys. Rev. A, 27 (1983), No. 3, 1393-1398.

X. Carvajal: Sharp Global Well-Posedness for a Higher Order Schrödinger Equation, J. Fourier Anal. Appl., 12 (2006), No. 1, 53-70.

H. H. Chen, Y. C. Lee, C. S. Liu. Integrability of Nonlinear Hamiltonian Systems by Inverse Scattering Method. Phys. Scr., 20 (1979), 490-492.

M. Delfour, M. Fortin, G. Payre: Finite-Difference Solutions of a Non-linear Schrödinger Equation. J. Comput. Phys. 44 (1981), 277-288.

G. Fibich: Adiabatic law for self-focusing of optical beams. Opt. Lett., 21 (1996), No. 21, 1735-1737.

R. Hirota. Exact envelope-soliton solutions of a nonlinear wave equation. J. Math. Phys., 14 (1973), No. 7, 805-809.

Y. Kivshar, B. Malomed.: Dynamics of solitons in nearly integrable systems, Rev. Modern Phys., 61 (1989), No. 4, 763-915.

Y. Kodama, A. Hasegawa: Nonlinear Pulse Propagation in a Monomode Dielectric Guide. IEEE J. Quantum Electron., QE-23 (1989), 510-524.12

D. J. Korteweg, G. De Vries. On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. Philos. Mag., 539 (1895), 422-443.

S. K. Lele. Compact Finite Difference Schemes with Spectral-like Resolution. J. Comput. Phys., 103 (1992), 16-42.

B. Li. Exact soliton solutions for the higher-order nonlinear Schrödinger equation. Int. J. Modern Phys. C, 16 (2005), No. 8, 1225-1237.

D. Furihata, T. Matsuo. Discrete variational derivative method : a structure-preserving numerical method for partial differential equations, Chapman &Hall/CRC, 2011.

A. F. Pazoto, M. Sepúlveda, O. Vera. Uniform stabilization of numerical

schemes for the critical generalized Korteweg-de Vries equation with damping. Numer. Math., 116 (2010), 317-356.

T. L. Perel’man, A. Kh. Fridman, M. M. El’yashevich. A modified Korteweg-de Vries equation in electrohydrodynamics. Sov. Phys. JETP, 39 (1974), No. 4, 643-646.

M. J. Potasek, M. Tabor. Exact solutions for an extended nonlinear Schrödinger equation. Phys. Lett. A, 154 (1991), No. 9, 449-452.

N. Sasa, J. Satsuma. New-Type of Soliton Solutions for a Higher-Order Nonlinear Schrödinger Equation. J. Phys. Soc. Jpn., 60 (1991), No. 2, 409-417.

M. Smadi, D. Bahloul. A compact split step Padé scheme for higher-order nonlinear Schrödinger equation (HNLS) with power law nonlinearity and fourth order dispersion. Comput. Phys. Commun., 182 (2011), 366-371.

M. Smadi, D. Bahloul. Dynamic of HNLS Solitons using Compact Split Step Padé Scheme. J. Phys. Conf. Ser., 574 (2015).

H. Takaoka. Well-posedness for the one-dimensional nonlinear Schrödinger equation with the derivative nonlinearity. Adv. Differential Equations, 4 (1999), No. 4, 561-580.

H. Takaoka. Well-posedness for the Higher Order Nonlinear Schrödinger Equation. Adv. Math. Sci. Appl., 10 (2000), No. 1, 149-171.

V. E. Zakharov, A. B. Shabat. Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media. Sov. Phys. JETP, 34 (1972), No.1, 62-69.

Downloads

Additional Files

Published

2019-06-12

Issue

Section

Articles