The study of the solution of a Fredholm-Volterra integral equation by Picard operators
Abstract
In this paper we will use the Picard operators technique, in order to establish the existence and uniqueness, data dependence and Gronwall-type results for the solutions of a Fredholm-Volterra functional-integral equation. The paper ends with a result of the Ulam-Hyers stability of this integral equation.
Keywords
Full Text:
PDFReferences
Andras, Sz., Ecuatii integrale Fredholm-Volterra, Editura Didactica si Pedagogica, Bucuresti, 2005.
Bainov, D., Simeonov, P., Integral inequalities and applications, Kluwer, Dordrecht, 1992.
Calio, F., Marcchetti, E., Muresan, V., On some Volterra-Fredholm integral equations, Int. J. Pure Appl. Math., 31(2006), no. 2, 173-184.
Coman, Gh., Rus, I., Pavel, G., Rus, I. A., Introducere in teoria ecuatiilor operatoriale, Editura Dacia, Cluj-Napoca, 1976.
Craciun, C., On some Gronwall inequalities, Seminar on Fixed Point Theory, 1(2000), 31-34.
Craciun, C., Lungu, N., Abstract and concrete Gronwall lemmas, Fixed Point Theory, 10(2009), no. 2, 221-228.
Craciun, C., Serban, M.A., A nonlinear integral equation via Picard operators, Fixed Point Theory, 12(2011), no. 1, 57-70.
Dobritoiu, M., The solution to a Fredholm implicit integral equation in the B(0;R) sphere, Bulletins for Applied&Computer Mathematics, Budapest, BAM CV(2003), no. 2162, 27-32.
Dobritoiu, M., Existence and continuous dependence on data of the solution of an integral equation, Bulletins for Applied&Computer Mathematics, Budapest, 2005.
Dobritoiu, M., A Fredholm-Volterra integral equation with modified argument, Analele Universitatii din Oradea, Fasc. Matematica, tom XIII, 2006, 133-138.
Dobritoiu, M., On an integral equation with modified argument, Acta Universitatis Apulensis, Mathematics-Informatics, 2006, no. 11, 387-391.
Dobritoiu, M., Analysis of an integral equation with modified argument, Studia Univ. Babes-Bolyai, Mathematica, 51(2006), no. 1, 81-94.
Dobritoiu, M., Properties of the solution of an integral equation with modified argument, Carpathian Journal of Mathematics, 23(2007), no. 1-2, 70-80.
Dobritoiu, M., A Nonlinear Fredholm Integral Equation, Transylvanian Journal of Mathematics and Mechanics, 1(2009), no. 1-2, 25-32.
Dobritoiu, M., A Class of Nonlinear Integral Equations, Transylvanian Journal of Mathematics and Mechanics, 4(2012), no. 2, 117-123.
Otrocol, D., Ilea, V., Ulam stability for a delay differential equation, Cent. Eur. J. Math., 11(2013), no. 7, 1296-1303.
Ilea, V., Otrocol, D., Some properties of solutions of a functional-differential equation of second order with delay, The Scientific World Journal, Hindawi Publishing Corporation, 2014, Article ID 878395, 8 pages.
Lungu, N., On some Volterra integral inequalities, Fixed Point Theory, 8(2007), no. 1, 39-45.
Mitrinovic, D.S., Pecaric, J.E., Fink, A.M., Inequalities Involving Functions and Their Integrals and Derivatives, Kluwer Academic Publishers, 1991.
Olaru, I.M., An integral equation via weakly Picard operators, Fixed Point Theory, 11(2010), no.1, 97-106.
Olaru, I.M., Data dependence for some integral equations, Studia Univ. Babes-
Bolyai, Mathematica, 55(2010), no.2, 159-165.
Olaru, I.M., I.M. Olaru, On some integral equations with deviating argument, Studia Univ. Babes-Bolyai Math., 50(2005), no. 4, 65-72.
Petrusel, A., Fredholm-Volterra integral equations and Maia's theorem, Seminar on Fixed Point Theory, Babes-Bolyai University of Cluj-Napoca, 1988, 79-82.
Rus, I.A., Results and problems in Ulam stability of operatorial equations and inclusions. Handbook of functional equations, Springer Optim. Appl., 96(2014), 323-352.
Rus, I.A., Remarks on Ulam stability of the operatorial equations, Fixed Point Theory, 10(2009), 305-320.
Rus, I.A., Fixed points, upper and lower fixed points: abstract Gronwall lemmas, Carpathian Journal of Mathematics, 20(2004), no. 1, 125-134.
Rus, I.A., Picard operators and applications, Scientiae Mathematicae Japonicae, 58(2003), no. 1, 191-219.
Rus, I.A., Generalized contractions and applications, Cluj University Press, Cluj-Napoca, 2001.
Rus, I.A., Weakly Picard operators and applications, Seminar on Fixed Point Theory, Babes-Bolyai University of Cluj-Napoca, 2(2001), 41-58.
Rus, I.A., Principii si aplicatii ale teoriei punctului fix, Editura Dacia, Cluj-Napoca, 1979.
Sincelean, A., On a class of functional-integral equations, Seminar on Fixed Point Theory, Babes-Bolyai University of Cluj-Napoca, 1(2000), 87-92.
Serban, M.A., Teoria punctului fix pentru operatori definiti pe produs cartezian, Presa Universitara Clujeana, Cluj-Napoca, 2002.
DOI: http://dx.doi.org/10.24193/subbmath.2019.4.09
Refbacks
- There are currently no refbacks.