Operator norms of Gauss-Weierstrass operators and their left quasi interpolants
Abstract
and their left quasi interpolants $W_{n}^{\left[ r\right] }$. The quasi interpolants were defined by Paul Sablonni\`{e}re in 2014. Recently, their asymptotic behaviour was studied by Octavian Agratini, Radu P\u{a}lt\u{a}nea and the author by presenting complete asymptotic expansions. In this paper we derive
estimates for the operator norms of $W_{n}$ and $W_{n}^{\left[ r\right] }$ when acting on various function spaces.
Keywords
Full Text:
PDFReferences
bibitem{Abel-Favard quasi-interpolants-StudMath-2011} Abel,~U., newblock%
emph{Asymptotic expansions for Favard operators and their left
quasi-interpolants}, newblock Stud. Univ. Babec{s}-Bolyai Math. textbf{56}(2011), 199--206.
bibitem{Abel-Agratini-Paltanea-MJOM-2018} Abel,~U., Agratini,~O., Pu{a}ltu{a}nea,~R., newblockemph{A complete asymptotic expansion for the
quasi-interpolants of Gauss --Weierstrass operators}, newblock Mediterr.
J. Math. textbf{15}(2018), Online First.newline
https://doi.org/10.1007/s00009-018-1195-8
bibitem{abel-butzer-Favard-2011} Abel,~U., Butzer,~P.~L., newblockemph{Complete asymptotic expansion for generalized Favard operators},
Constr. Approx. textbf{35}(2012), 73--88.newline
DOI: 10.1007/s00365-011-9134-y.
bibitem{Abel-Ivan-FAAT-2009-2010} Abel,~U., Ivan,~M., emph{Simultaneous approximation by Altomare operators}, newblock Proceedings of the 6th international conference on functional analysis and approximation theory, Acquafredda di Maratea (Potenza), Italy, Sept. 24--30, 2009, Palermo: newblock Circolo Matem`{a}tico di Palermo, Rend. Circ. Mat.
Palermo, Serie II, Suppl. textbf{82}(2010), 177--193.
bibitem{Abramowitz} Abramowitz,~M., Stegun,~A., newblockemph{Handbook of Mathematical Functions}, newblock Appl. Math. Ser. 55, National Bureau of Standards, Washington D.~C., 1972.
bibitem{Altomare-Milella-2008} Altomare,~F., Milella,~S., newblockemph{Integral-type operators on continuous function spaces on the real line}, J. Approx. Theory textbf{152}(2008), 107--124.newline
http://dx.doi.org/10.1016/j.jat.2007.11.002
bibitem{Altomare-Campiti-Book-1994} Altomare~F., Campiti~M., emph{Korovkin-type Approximation Theory and its Applications}, de Gruyter Studies in Mathematics 17, W. de Gruyter, Berlin, New York, 1994.
bibitem{Butzer-Nessel} Butzer,~P.~L., Nessel,~R.~J., newblockemph{Fourier Analysis and Approximation}, newblock Birkh"{a}user Verlag, Basel, 1971.
bibitem{Gautschi-book-2004} Gautschi,~W., emph{Orthogonal Polynomials}, Oxford University Press, 2004.
bibitem{Gould-Identities-1972} Gould,~H.~W., emph{Combinatorial Identities}, newblock Morgantown Print & Bind., Morgantown, WV (1972).
bibitem{Sablonniere-JAT-2014} Sablonni`{e}re,~P., newblockemph{Weierstrass quasi-interpolants}, newblock J. Approx. Theory textbf{180}(2014), 32--48.newline
newblock http://dx.doi.org/10.1016/j.jat.2013.12.003
bibitem{Watson-1958} Watson,~G.~N., newblockemph{A note on gamma functions}, newblock Proc. Edinb. Math. Soc. textbf{2}(11) (1958/59);
Edinburgh Math. Notes textbf{42}(1959), 7--9.
DOI: http://dx.doi.org/10.24193/subbmath.2019.2.08
Refbacks
- There are currently no refbacks.