A generalization of Bernstein-Durrmeyer operators on hypercubes by means of an arbitrary measure

Authors

  • Mirella Cappelletti Montano Dipartimento di Matematica Università degli Studi di Bari "A. Moro" Campus Universitario Via E. Orabona, 4 70125 Bari Italia http://orcid.org/0000-0003-1850-0428
  • Vita Leonessa Università degli Studi della Basilicata Dipartimento di Matematica, Informatica ed Economia Viale dell'Ateneo Lucano 10 85100 Potenza Italy

DOI:

https://doi.org/10.24193/subbmath.2019.2.09

Keywords:

Bernstein operator. Bernstein-Durrmeyer operator. Approximation process. Asymptotic formula.

Abstract

In this paper we introduce and study a sequence of Bernstein-Durrmeyer type operators  $(M_{n,\mu})_{n\geq 1}$,  acting on spaces of continuous or integrable functions on the multi-dimensional hypercube $Q_d$ of $\mathbf{R}^d$ ($d\geq 1$), defined by means of an arbitrary measure  $\mu$. We investigate their approximation properties both in the space of all continuous functions and in $L^p$-spaces with respect to $\mu$, also furnishing some esitmates of the rate of convergence. Further, we prove  an asymptotic formula for the $M_{n,\mu}$'s. The paper ends with a concrete example.

Downloads

Published

2019-06-12

Issue

Section

Articles