Cover Image

Various results in relation with the hypergeometric equations and the hypergeometric functions in the complex plane

Hüseyin Irmak

Abstract


The purpose of this work is to derive extensive results in relation with the hypergeometric
functions and the hypergeometric equations in the complex plane and then to point various
implications along with certain comments related to main results out.


Full Text:

PDF

References


begin{thebibliography}{}

begin{itemize}

item[{[1]}] J. Abad and J. Sesma, Buchholz polynomials: A family of polynomials relating

solutions of confluent hypergeometric and Bessel equations, J. Comput. Appl. Math.

(1999), 237-241.

item[{[2]}] M. Abramowitz and I.A. Stegun (Eds.), Confluent hypergeometric functions

in Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables,

New York, 1972.

item[{[3]}] L. U. Ancarani and G. Gasaneo, Derivatives of any order of the confluent

hypergeometric function ${_1}F_1(a, b, z)$ with respect to the parameter $a$ or $b,$

J. Math. Phys. 49 (6) (2008), 16 pp.

item[{[4]}] G. E. Andrews, R. Askey and R. Roy, Special Functions, Vol. 71 of

Mathematics and its Applications, Cambridge University Press (1999)

item[{[5]}] G.D. Anderson, M.K. Vamanamurthy and M. Vuorinen: Conformal invariants,

inequalities and quasiconformal maps, John Wiley & Sons, 1997.

item[{[6]}] R. El Attar, Special Functions and Orthogonal Polynomials, Lulu Press, USA,

item[{[7]}] W. N. Bailey, Generalized Hypergeometric Series, Cambridge University Press,

Cambridge, 1935, Reprinted: Stechert-Hafner, New York, 1964.

item[{[8]}] R. Balasubramanian, S. Ponnusamy and M. Vuorinen, On hypergeometric

functions and function spaces, J. Comput. Appl. Math. 139 (2002), 299-322.

item[{[9]}] R. Badralexe, P. Marksteiner, Y. Oh and A. J. Freeman, Computation of the

Kummer functions and Whittaker functions by using Neumann type series expansions, Comput.

Phys. Commun. 71, 47-55 (1992)

item[{[10]}] W.W. Bell, Special Functions for Scientists and Engineers, D, Van Nostrand

Company Ltd, Reinhold, New York, 1968.

item[{[11]}] B. Carlson, Special Functions of Applied Mathematics, Academic Press, New

York, 1977.

item[{[12]}] M. W. Coffey and S. J. Johnston, Some results involving series representations

of hypergeometric functions, J. Comp. Appl. Math. 233: 674-679, 2009.

item[{[13]}] C. Chiarella amd A. Reichel, On the evaluation of integrals related to the

error function, Math. Comp. 22 (1968), 137-143.

item[{[14]}] A. Erdelyi, W. Mangus, F. Oberhettinger and F. G. Tricomi, Higher Transcendental

Functions, Vol I, McGraw-Hill, New York, 1953.

item[{[15]}] M. Dotsenko, On some applications of Wright’s hypergeometric function, C. R. Acad.

Bulgare Sci. 44 (6) (1991), 13-16.

item[{[16]}] T. M. Dunster, Asymptotic approximations for the Jacobi and ultraspherical

polynomials and related functions, Methods Appl. Anal. 6 (1999), 21-56.

item[{[17]}] O. J. Farrell and B. Ross, Solved Problems in Analysis, as applied to Gamma, Beta,

Legendre and Bessel Functions, Dover Publications, New York, 1971.

item[{[18]}] C. Ferreira, J.L. Lopez and E. P. Sinusia, The Gauss hypergeometric function

$F(a, b; c; z)$ for large $c,$ J. Comput. Appl. Math. 197 (2006), 568-577.

item[{[19]}] R.C. Forrey, Computing the hypergeometric function, J. Comput. Phys. 137 (1997),

-100.

item[{[20]}] W. Gautschi, Efficient computation of the complex error function, Siam J.

Numer. Anal. 7 (1970), 187-198.

item[{[21]}] G. Gasper and M. Rahman, Basic Hypergeometric Series, Encyclopedia

of Mathematics and its Applications, Cambridge University Press, Cambridge, UK (1990).

item[{[22]}] A. Gil, J. Segura and N.M. Temme, Numerical Methods for Special Functions,

Society for Industrial and Applied Mathematics (2007).

item[{[23]}] I. S. Gradshteyn and I. M. Ryzhik, Table of integrals, series and products,

th ed. Elsevier/Academic Press, Amsterdam (2007).

item[{[24]}] N. Hale and A. Townsend, Fast and accurate computation of Gauss-Legendre and

Gauss-Jacobi quadrature nodes and weights, SIAM J. Sci. Comput. 35, A652-A674 (2013).

item[{[25]}] Y.P. Hsu, Development of a Gaussian hypergeometric function code in complex

domains, Int. J. Modern Phys. C 4 (1993), 805-840.

item[{[26]}] H. Irmak, Some novel applications in relation with certain equations

and inequalities in the complex plane, Math. Commun. 23 (1) (2018), 9-14.

item[{[27]}] H. Irmak and P. Agarwal, Some comprehensive inequalities consisting of

Mittag-Leffler type functions in the Complex Plane, Math. Model. Nat. Phenom. 12 (3)

(2017), 65-71.

item[{[28]}] H. Irmak, Certain complex equations and some of their implications in

relation with normalized analytic functions, Filomat 30 (12) (2016), 3371-3376.

item[{[29]}] M. c{S}an and H. Irmak, Some novel applications of certain higher order

ordinary complex differential equations to normalized analytic functions, J. Appl.

Anal. Comput. 5 (3) (2015), 479-484.

item[{[30]}] H. Irmak, T. Bulboaca and N. Tuneski, Some relations between certain

classes consisting of $alpha$-convex type and Bazilevic type functions, Appl. Math.

Lett. 24 (12) (2011), 2010-2014.

item[{[31]}] S. J. McKenna, A method of computing the complex probability function

and other related functions over the whole complex plane, Astrophys. Space Sci. 107 (1)

(1984), 71-83.

item[{[32]}] S. Kanemitsu, H. Tsukada, Vistas of Special Functions, World Scientific

Publishing Company, Singapore, 2007.

item[{[33]}] S.L. Kalla, On the evaluation of the Gauss hypergeometric function, C

ompt. Rendus l’Acad. Bulgare Sci. 45 (1992), 35–36.

item[{[34]}] N. N. Lebedev, Special Functions and their Applications, Prentice Hall, New

Jersey, (1965).

item[{[35]}] S. S. Miller and P. T. Mocanu, Second-order differential inequalities in the

complex plane, J. Math. Anal. Appl., 65 (1978) 289-305.

item[{[36]}] S. S. Miller and P. T. Mocanu, Univalence of Gaussian and confluent hypergeometric

functions, Proc. Amer. Math. Soc. 110 (1990), 333-342.

item[{[37]}] T. Morita, Use of the gauss contiguous relations in computing the hypergeometric

functions ${_2}F_1(n + 1/2, n + 1/2; m ; z),$ Interdisciplinary Information Sciences 2 (1) 1996,

-74.

item[{[38]}] F. W. J. Olver, D. W. Lozier, R. F. Boisvert and C. W. Clark (Eds), NIST

Handbook of Mathematical Functions, Cambridge University Press, New York, USA (2010).

item[{[39]}] E. D. Rainville, Special Functions, The Macmillan, New York, NY, USA (1960).

item[{[40]}] F. W. J. Olver, Asymptotics and special functions, AKP Classics, A K Peters

Ltd., Wellesley, MA (1997).

item[{[41]}] S. Ponnusamy, Hypergeometric transforms of functions with derivative in a

half plane, Journal of Computational and Applied Mathematics vol. 96 (1) 1998, 35-49.

item[{[42]}] E. D. Rainville, Special functions, Chelsea Publishing Company, New York

(1960).

item[{[43]}] M.A. Rakha and E.S. El-Sedy, Application of basic hypergeometric series, Appl.

Math. Comput. 148 (2004), 717-723.

item[{[44]}] J.B. Seaborn, Hypergeometric Functions and their Applications. Springer-Verlag (1991).

item[{[45]}] L.J. Slater, Confluent Hypergeometric Functions. Cambridge University Press (1960).

item[{[46]}] L.J. Slater, Generalized Hypergeometric Functions. Cambridge University Press (1966).

item[{[47]}] L. J. Slater, The second form of solutions of Kummer's equations and confluent

hypergeometric functions, Cambridge, Cambridge University Press (1960).

item[{[48]}] N.M. Temme, Special Functions: An Introduction to the Classical Functions of Mathematical

Physics, Wiley (1996).

item[{[49]}] H. Wallman, Transient response and the central limit theorem of probability,

Proc. Symposia Appl. Math. 2 (1950), 91-112.

item[{[50]}] Z. X. Wang, D. R. Guo, Special Functions, World Scientific, Singapore (2010).

item[{[51]}] S. Zhang and J. Jin, Computation of Special Functions. Wiley (1966).

end{itemize}

end{thebibliography}




DOI: http://dx.doi.org/10.24193/subbmath.2020.3.03

Refbacks

  • There are currently no refbacks.