Coefficient estimates for a subclass of meromorphic bi-univalent functions defined by subordination
Abstract
In this work, we use the Faber polynomial expansion by a new method to find
upper bounds for $\left\vert b_{n}\right\vert $ coefficients for meromorphic
bi-univalent functions class $\Sigma ^{\prime }$ which is defined by
subordination.
Further, we generalize and improve some of the previously
published results.
Keywords
Full Text:
PDFReferences
bibitem{Ai1} Airault, H., Remarks on Faber polynomials, textit{Int. Math.Forum.} 3 (2008), 449--456.
bibitem{Ai} Airault, H., and Bouali A, Differential calculus on the Faber
polynomials, textit{Bull. Sci. Math.} 130 (2006), 179--222.
bibitem{Air} Airault, H., Ren, J., An algebra of differential operators and
generating functions on the set of univalent functions, textit{Bull. Sci.
Math.} 126 (2002), 343--367.
bibitem{A} Ali, R. M., Lee, S. K., Ravichandran, V., Subramaniam, S., Coefficient estimates for bi-univalent Ma-Minda starlike and convex functions, textit{Appl. Math. Lett.} 25 (2012), 344--351.
bibitem{Fi} Ali, M. F., Vasudevarao, A., On coefficient estimates of negative powers and inverse coefficients for certain starlike functions, textit{ Proc. Math. Sci.} 127 (2017), 449--462.
bibitem{Bo} Bouali, A., Faber polynomials, Cayley-Hamilton equation andNewton symmetric functions, textit{Bull. Sci. Math.} 130 (2006),
--70.
bibitem{Du} Duren, P. L., Univalent Functions, Grundlehren der Mathematischen
Wissenschaften, Band 259, Springer-Verlag, New York, Berlin, Heidelberg and
Tokyo, 1983.
bibitem{Fa} Faber, G., "{U}ber polynomische Entwickelungen, textit{Math.
Ann.} 57 (1903), 389--408.
bibitem{Ha} Halim, S. A., Hamidi, S. G., Ravichandran, V., Coefficient estimates
for meromorphic bi-univalent functions, arXiv:1108.4089v1 [math.CV](2011).
bibitem{Ham} Hamidi, S. G., Halim, S. A., Jahangiri, J. M., Coefficient estimates
for a class of meromorphic bi-univalent functions, textit{C. R. Math. Acad.
Sci. Paris.} 351 (2013) 349-352.
bibitem{SSJ} Hamidi, S. G., Halim, S. A., Jahangiri, J. M., Faber polynomial
coefficient estimates for meromorphic bi-starlike functions, textit{Int. J.
Math. Math. Sci.} Art. ID 498159 (2013), 4p.
bibitem{Ha2} Hamidi, S. G., Jahangiri, J. M., Faber polynomial coefficients of
bi-subordinate functions, textit{C. R. Math. Acad. Sci. Paris.} 354
(2016), 365--370.
bibitem{HTJ} Hamidi, S. G., Janani, T., Murugusundaramoorthy, G., Jahangiri, J.
M., Coefficient estimates for certain classes of meromorphic bi-univalent
functions, textit{C. R. Math. Acad. Sci. Paris.} 352 (2014),
--282.
bibitem{Jah} Jahangiri, J. M., Hamidi., S. G., Coefficient estimates for
certain classes of bi-univalent functions, textit{Int. J. Math. Math. Sci.}
Art. ID 190560 (2013), 4p.
bibitem{Ja} Jahangiri, J. M., Hamidi, S. G., Halim, S. A., Coefficients of
bi-univalent functions with positive real part derivatives, textit{Bull.
Malays. Math. Sci. Soc.} 37 (2014), 633--640.
bibitem{KM} Kapoor, G. P., Mishra, A. K., Coeffcient estimates for inverses of
starlike functions of positive order, textit{J. Math. Anal. Appl.}
(2007), 922--934.
bibitem{Ku} Kubota, Y., Coeffcients of meromorphic univalent functions,
textit{Kodai Math. Sem. Rep.} 28 (1976/77), 253--261.
bibitem{Ma} Ma, W., Minda, D., A unified treatment of some special classes
of univalent functions, in: Proceedings of the conference on complex
Analysis, Z. Li, F. Ren, L. Lang and S. Zhang (eds), Int. Press (1994),
--169.
bibitem{Pa} Panigrahi, T., Coefficient bounds for certain subclasses of
meromorphic and bi-univalent functions, textit{Bull. Korean Math. Soc.}
(2013), 1531--1538.
bibitem{Ro} Robertson, M. I. S., On the theory of univalent functions, textit{%
Ann. Math.} 37 (1936), 374--408.
bibitem{Sch} Schober, G., Coeffcients of inverses of meromorphic univalent
functions, textit{Proc. Amer. Math. Soc.} 67 (1977), 111--116.
bibitem{Sc} Schiffer, M., Sur un probl'{e}me dextr'{e}mum de la repr'{e}%
sentation conforme, textit{Bull. Soc. Math. France.} 66 (1938),
--55.
bibitem{Sp} Springer, G., The coeffcient problem for schlicht mappings of the
exterior of the unit circle, textit{Trans. Amer. Math. Soc.} 70
(1951), 421--450.
bibitem{Zi1} Zireh, A., Analouei Adegani, E., Bulut, S., Faber polynomial
coefficient estimates for a comprehensive subclass of analytic bi-univalent
functions defined by subordination, textit{Bull. Belg. Math. Soc. Simon
Stevin.} 23 (2016), 487--504.
bibitem{Zi2} Zireh, A., Analouei Adegani, E., Bidkham, B., Faber polynomial
coefficient estimates for subclass of bi-univalent functions defined by
quasi-subordinate, Mathematica Slovaca., 68 (2018) 369--378.
DOI: http://dx.doi.org/10.24193/subbmath.2020.1.05
Refbacks
- There are currently no refbacks.