Coefficient estimates for a subclass of meromorphic bi-univalent functions defined by subordination

Ahmad Motamednezhad, Serap Bulut

Abstract


In this work, we use the Faber polynomial expansion by a new method to find
upper bounds for $\left\vert b_{n}\right\vert $ coefficients for meromorphic
bi-univalent functions class $\Sigma ^{\prime }$ which is defined by
subordination.
Further, we generalize and improve some of the previously
published results.


Keywords


Coefficient estimates; Faber polynomial expansion; Meromorphic functions; Subordinate

Full Text:

PDF

References


bibitem{Ai1} Airault, H., Remarks on Faber polynomials, textit{Int. Math.Forum.} 3 (2008), 449--456.

bibitem{Ai} Airault, H., and Bouali A, Differential calculus on the Faber

polynomials, textit{Bull. Sci. Math.} 130 (2006), 179--222.

bibitem{Air} Airault, H., Ren, J., An algebra of differential operators and

generating functions on the set of univalent functions, textit{Bull. Sci.

Math.} 126 (2002), 343--367.

bibitem{A} Ali, R. M., Lee, S. K., Ravichandran, V., Subramaniam, S., Coefficient estimates for bi-univalent Ma-Minda starlike and convex functions, textit{Appl. Math. Lett.} 25 (2012), 344--351.

bibitem{Fi} Ali, M. F., Vasudevarao, A., On coefficient estimates of negative powers and inverse coefficients for certain starlike functions, textit{ Proc. Math. Sci.} 127 (2017), 449--462.

bibitem{Bo} Bouali, A., Faber polynomials, Cayley-Hamilton equation andNewton symmetric functions, textit{Bull. Sci. Math.} 130 (2006),

--70.

bibitem{Du} Duren, P. L., Univalent Functions, Grundlehren der Mathematischen

Wissenschaften, Band 259, Springer-Verlag, New York, Berlin, Heidelberg and

Tokyo, 1983.

bibitem{Fa} Faber, G., "{U}ber polynomische Entwickelungen, textit{Math.

Ann.} 57 (1903), 389--408.

bibitem{Ha} Halim, S. A., Hamidi, S. G., Ravichandran, V., Coefficient estimates

for meromorphic bi-univalent functions, arXiv:1108.4089v1 [math.CV](2011).

bibitem{Ham} Hamidi, S. G., Halim, S. A., Jahangiri, J. M., Coefficient estimates

for a class of meromorphic bi-univalent functions, textit{C. R. Math. Acad.

Sci. Paris.} 351 (2013) 349-352.

bibitem{SSJ} Hamidi, S. G., Halim, S. A., Jahangiri, J. M., Faber polynomial

coefficient estimates for meromorphic bi-starlike functions, textit{Int. J.

Math. Math. Sci.} Art. ID 498159 (2013), 4p.

bibitem{Ha2} Hamidi, S. G., Jahangiri, J. M., Faber polynomial coefficients of

bi-subordinate functions, textit{C. R. Math. Acad. Sci. Paris.} 354

(2016), 365--370.

bibitem{HTJ} Hamidi, S. G., Janani, T., Murugusundaramoorthy, G., Jahangiri, J.

M., Coefficient estimates for certain classes of meromorphic bi-univalent

functions, textit{C. R. Math. Acad. Sci. Paris.} 352 (2014),

--282.

bibitem{Jah} Jahangiri, J. M., Hamidi., S. G., Coefficient estimates for

certain classes of bi-univalent functions, textit{Int. J. Math. Math. Sci.}

Art. ID 190560 (2013), 4p.

bibitem{Ja} Jahangiri, J. M., Hamidi, S. G., Halim, S. A., Coefficients of

bi-univalent functions with positive real part derivatives, textit{Bull.

Malays. Math. Sci. Soc.} 37 (2014), 633--640.

bibitem{KM} Kapoor, G. P., Mishra, A. K., Coeffcient estimates for inverses of

starlike functions of positive order, textit{J. Math. Anal. Appl.}

(2007), 922--934.

bibitem{Ku} Kubota, Y., Coeffcients of meromorphic univalent functions,

textit{Kodai Math. Sem. Rep.} 28 (1976/77), 253--261.

bibitem{Ma} Ma, W., Minda, D., A unified treatment of some special classes

of univalent functions, in: Proceedings of the conference on complex

Analysis, Z. Li, F. Ren, L. Lang and S. Zhang (eds), Int. Press (1994),

--169.

bibitem{Pa} Panigrahi, T., Coefficient bounds for certain subclasses of

meromorphic and bi-univalent functions, textit{Bull. Korean Math. Soc.}

(2013), 1531--1538.

bibitem{Ro} Robertson, M. I. S., On the theory of univalent functions, textit{%

Ann. Math.} 37 (1936), 374--408.

bibitem{Sch} Schober, G., Coeffcients of inverses of meromorphic univalent

functions, textit{Proc. Amer. Math. Soc.} 67 (1977), 111--116.

bibitem{Sc} Schiffer, M., Sur un probl'{e}me dextr'{e}mum de la repr'{e}%

sentation conforme, textit{Bull. Soc. Math. France.} 66 (1938),

--55.

bibitem{Sp} Springer, G., The coeffcient problem for schlicht mappings of the

exterior of the unit circle, textit{Trans. Amer. Math. Soc.} 70

(1951), 421--450.

bibitem{Zi1} Zireh, A., Analouei Adegani, E., Bulut, S., Faber polynomial

coefficient estimates for a comprehensive subclass of analytic bi-univalent

functions defined by subordination, textit{Bull. Belg. Math. Soc. Simon

Stevin.} 23 (2016), 487--504.

bibitem{Zi2} Zireh, A., Analouei Adegani, E., Bidkham, B., Faber polynomial

coefficient estimates for subclass of bi-univalent functions defined by

quasi-subordinate, Mathematica Slovaca., 68 (2018) 369--378.




DOI: http://dx.doi.org/10.24193/subbmath.2020.1.05

Refbacks

  • There are currently no refbacks.