Differential subordinations and superordinations for analytic functions defined by Salagean integro-differential operator

Pall-Szabo Agnes

Abstract


In this paper we consider the $\mathscr{L}^{n}:\mathcal{A} \rightarrow \mathcal{A}$, \\
$\mathscr{L}^{n}f\left(z\right)=\left(1-\lambda\right)\mathscr{D}^{n}f\left(z\right)+\lambda I^{n}f\left(z\right)$ linear operator, where $\mathscr{D}^{n}$ is the S\v{a}l\v{a}gean differential operator and $I^{n}$ is the S\v{a}l\v{a}gean integral operator. We give some results and applications for differential subordinations and superordinations for analytic functions and we will determine some properties on admissible functions defined with the new operator.


Keywords


S\v{a}l\v{a}gean integro-differential operator; differential subordination; differential superordination; dominant; best dominant; ''sandwich-type theorem''

Full Text:

PDF

References


M. K. Aouf, T.M. Seoudy, On differential Sandwich theorems of analytic functions defined by generalized Salagean integral operator, Applied Mathematics Letters 24 (2011), pp. 1364-1368.

T. Bulboaca, Differential Subordinations and Superordinations, Casa Cartii de Stiinta, Cluj-Napoca, 2005.

L. I. Cotîrla, Differential subordination and superordination for analytic functions defined by integral operator, Carpathian Journal of Mathematics, Vol. 25, 1 (2009), 49-54.

R.M. El-Ashwah, M. K. Aouf, Differential subordination and superordination for certain subclasses of analytic functions involving an extended integral operator, Acta Universitatis Apulensis, No. 28(2011), pp.341-350.

S. S. Miller, P. T. Mocanu, Differential subordinations and univalent functions, Michig. Math. J. 28 (1981), 157-171.

S. S. Miller, P. T. Mocanu, Subordinants of differential superordinations, Complex Variables, 48 (2003), 815-826.

S. S. Miller, P. T. Mocanu, Differential Subordinations. Theory and Applications, Marcel Dekker Inc., New York, Basel, 2000.

P. T. Mocanu, T. Bulboaca, G. S. Salagean, The geometric theory of univalent functions, Casa Cartii de Stiinta, Cluj-Napoca, 2006.

V. O. Nechita, Differential subordinations and superordinations for analytic functions defined by the generalized Salagean derivative, Acta Univ. Apulensis, Math. Inform. 16 (2008), 143-156.

G. S. Salagean, Subclasses of univalent functions, Lecture Notes in Math. (Springer Verlag), 1013(1983), 362-372.




DOI: http://dx.doi.org/10.24193/subbmath.2019.4.03

Refbacks

  • There are currently no refbacks.