On subclasses of bi-convex functions defined by Tremblay fractional derivative operator

Sevtap Sümer Eker, Bilal Şeker

Abstract


We introduce and investigate new subclasses of analytic and bi-univalent functions defined by modified Tremblay operator in the open unit disk. Also we obtain upper bounds for the coefficients of functions belonging to these classes.

Keywords


30C45, 30C50, 30C80

Full Text:

PDF

References


bibitem{Eker} Ak{i}n G. and S"{u}mer Eker S., emph{Coefficient estimates for a

certain class of analytic and bi-univalent functions defined by fractional

derivative}, C. R. Acad. Sci. S'{e}r. I textbf{352} (2014), 1005--1010.

bibitem{Ali} Ali R.M., Lee S.K., Ravichandran V., Supramaniam S., emph{Coefficient estimates for bi-univalent Ma-Minda starlike and convex functions}, Applied Mathematics Letters, textbf{25} (2012) 344-351.

bibitem{Caglar}Caglar M.,Deniz E.,Srivastava H.M., emph{Second Hankel determinant for certain subclasses of bi-univalent functions}, Turk J Math (2017) textbf{41}, 694--706.

bibitem{Deniz} Deniz E., emph{Certain subclasses of bi-univalent functions satisfying subordinate

conditions}, J. Class. Anal. 2013; textbf{2}, 49-60.

bibitem{Brannan3} Brannan D.A., Taha T.S., emph{On some classes of bi-univalent functions}, in: S.M. Mazhar, A. Hamoui, N.S. Faour (Eds.), Mathematical Analysis and Its Applications, Kuwait; February 18-21, 1985, in: KFAS Proceedings Series, vol. 3, Pergamon Press, Elsevier Science Limited, Oxford, 1988, pp. 53-60. See also Studia Univ. Babec{s}-Bolyai Math. 31 textbf{2} (1986) 70-77.

bibitem{Duren} Duren P.L., emph{Univalent Functions}, in: Grundlehren der Mathematischen Wissenschaften, Band 259, Springer-Verlag, New York, Berlin, Heidelberg and Tokyo, 1983.

bibitem{Esa et al} Esa Z., Kilicman A. , Ibrahim R. W.,Ismail M. R. and

Husain S. K. S., emph{Application of Modified Complex Tremblay Operator},

AIP Conference Proceedings 1739, 020059 (2016); http://doi.org/10.1063/1.4952539.

bibitem{Ibrahim-Jahangiri} Ibrahim R.W. , Jahangiri J.M., emph{Boundary

fractional differential equation in a complex domain.} Boundary Value

Problems, 2014 ; Article ID 66: 1 -- 11.

bibitem{Kumar} Kumar S. S., Kumar V. and Ravichandran V., emph{Estimates for the

initial coefficients of bi-univalent functions}, Tamsui Oxford J. Inform.

Math. Sci. textbf{29} (2013), 487--504.

bibitem{Lewin} Lewin M. , emph{On a coefficient problem for bi-univalent functions}, Proc. Amer. Math. Soc. textbf{18} (1967) 63-68.

bibitem{Magesh-and-Yamini2013} Magesh N. and Yamini J., emph{Coefficient bounds for

a certain subclass of bi-univalent functions}, Internat. Math.

Forum textbf{27} (2013), 1337--1344.

bibitem{Peng} Peng Z.G. and Han Q.Q. , emph{On the coefficients of several classes of bi-univalent

functions}, Acta Math. Sci. Ser. B Engl. Ed. textbf{34} (2014), 228-240.

bibitem{Pommerenke} Pommerenke Ch., emph{Univalent functions} Göttingen: Vandenhoeck Ruprecht 1975

bibitem{Rudin}Rudin W., emph{Real and Complex Analysis}, McGraw-Hill Education ; 3 edition (May 1, 1986)

bibitem{Owa Kyungpook} Owa S., emph{On the distortion theorems I}, Kyungpook Math.J. textbf{18} (1978), 53-59.

bibitem{Owa-Srivastava} Owa S. and Srivastava H.M., emph{Univalent and starlike

generalized hypergeometric functions}, Canad. J. Math.

textbf{39} (1987), 1057-1077.

bibitem{Srivastava-Eker-Ali} Srivastava H.M., S"{u}mer Eker S. and

Ali R.M., emph{Coefficient Bounds for a certain class of analytic and bi-univalent

functions}, Filomat textbf{29} (2015), 1839--1845.

bibitem{Srivastava} Srivastava H.M., Mishra A.K. and Gochhayat P., emph{Certain subclasses of analytic and bi-univalent functions}, Appl. Math. Lett. textbf{23} (2010) 1188-1192.

bibitem{Srivastava springer} Srivastava H.M., emph{Some inequalities and other results associated with certain subclasses of univalent and bi-univalent analytic functions}, in: Nonlinear Analysis: Stability; Approximation; and Inequalities (Panos M. Pardalos,Pando G. Georgiev and Hari M. Srivastava, Editors.), Springer Series on Optimization and Its Applications, Vol. 68, Springer-Verlag, Berlin, Heidelberg and New York, 2012, pp. 607-630.

bibitem{Srivastava-Owa} Srivastava H.M. and Owa S., emph{Some characterization and

distortion theorems involving fractional calculus, linear operators

and certain subclasses of analytic functions}, Nagoya Math. J. textbf{106} (1987),1-28.

bibitem{Srivastava-Owa book} Srivastava H.M. and Owa S., emph{Univalent Functions, Fractional Calculus, and Their Applications}, Halsted Press, Ellis Horwood Limited, Chichester and JohnWiley and Sons, NewYork, Chichester, Brisbane and Toronto, 1989.

bibitem{Srivastava-Bansal} Srivastava H.M. and Bansal D., emph{Coefficient estimates

for a subclass of analytic and bi-univalent functions}, J. Egyptian Math. Soc.

textbf{23} (2015), 242--246.

bibitem{Eker2} S"{u}mer Eker S., emph{Coefficient bounds for subclasses of m-fold symmetric bi-univalent functions},

Turk J Math (2016) textbf{40}: 641--646.

bibitem{Eker3} S"{u}mer Eker S., emph{Coefficient estimates for new subclasses of m-fold symmetric bi-univalent functions},

Theory and Applications of Mathematics and Computer Science 6 textbf{2} (2016) 103–-109.

bibitem{Taha} Taha T.S., emph{Topics in Univalent Function Theory}, Ph.D. Thesis, University of London, 1981.

bibitem{Tremblay} Tremblay R. , emph{Une Contribution `{a} la Th'{e}orie de la D%

'{e}riv'{e}e Fractionnaire} Ph.D. thesis, Laval University, Qu'{e}bec,




DOI: http://dx.doi.org/10.24193/subbmath.2019.4.02

Refbacks

  • There are currently no refbacks.