Statistical e-convergence of double sequences on probabilistic normed spaces

Sevda Akdağ

Abstract


The concept of statistical convergence for double sequences on probabilistic normed spaces was presented by Karakus and Demirci in 2007. The purpose of this paper is to introduce the concept of statistical e-convergence for double sequences and study some fundamental properties of statistical e-convergence for double sequences on probabilistic normed spaces.

Keywords


Double sequences, t-norm, probabilistic normed spaces, e-convergence, statistical e-convergence

Full Text:

PDF

References


Alsina, C., Schweizer, B., Sklar, A., Continuity properties of probabilistic norms, J. Math. Anal. Appl., 208 (1997) 446-452.

Boos, J., Leiger, T., Zeller, K., Consistency theory for SM-methods, Acta Math. Hungar., 76 (1997) 83-116.

Boos, J., Classical and modern methods in summability, Oxford University Press Inc. (New York, 2000).

Fast, H., Sur la convergence statistique, Colloq. Math. 2 (1951) 241-244.

Frank, M. J., Probabilistic topological spaces, J. Math. Anal. Appl. 34 (1971) 67-81.

Fridy, J. A., On statistical convergence of multiple sequences, Analysis, 5 (1985) 301-313.

Guille'n, B. L., Lallena, J. A. R., Sempi, C., A study of boundedness in probabilistic normed spaces, J. Math. Anal. Appl., 232 (1999) 183-196.

Guille'n, B. L., Sempi, C., Probabilistic norms and convergence of random variables, J. Math. Anal. Appl., 280 (2003) 9-16.

Karakuş, S., Demirci, K., Duman, O., Equi-statistical convergence of positive linear operators, Journal of Mathematics, 33 (2009) 159-168.

Karakuş, S., Demirci, K., Duman, O., Statistical convergence on intuitionistic fuzzy normed spaces, Chaos Solitons and Fractals, 35 (2008) 763-769.

Karakus, S., Statistical convergence on probabilistic normed spaces, Mathematical Communications, 12 (2007) 11-23.

Karakus, S., Demirci, K., Statistical convergence of double sequences on probabilistic normed spaces, Int. J. Math. Sci. Article ID14737,11 pages (2007).

Menger, K., Statistical metrics, Proc. Nat. Acad. Sci. USA, 28 (1942) 535-537.

Moricz, F., Statistical convergence of multiple sequences, Arch. Math., 81 (2003) 82-89.

Mursaleen, M., Edely, Osama H.H., Statistical convergence of double sequences, J. Math. Anal. Appl., 288 (2003) 223-231.

Mursaleen, M., Edely, O. H. H., Statistical convergence of double sequences, Journal of Mathematical Analysis and Applications, 288 (1) (2003) 223-231.

Pringsheim, A., Zur theorie der zweifach unendlichen zahlenfolgen, Mathematische Annalen, 53 (3) (1900) 289-321.

Schweizer, B., Sklar, A., Statistical metric spaces, Pacific J. Math., 10 (1960) 313-334.

Schweizer, B., Sklar, A., Probabilistic metric spaces, North Holland, New York-Amsterdam-Oxford, 1983.

Sever, Y., Talo, Ö., Statistical e-convergence of double sequences and its application to Korovkin type approximation theorem for functions of two variables, Iran J. Sci. Technol Trans A Sci., 41 (3) (2017) 851-857.

Sever, Y., Talo, Ö., On statistical e-convergence of double sequences, Iran J. Sci. Technol Trans A Sci. Do.:10.1007/540995-017-0476-6.

Steinhaus, H., Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math., 2 (1951) 73--74.




DOI: http://dx.doi.org/10.24193/subbmath.2019.4.07

Refbacks

  • There are currently no refbacks.