Statistical e-convergence of double sequences on probabilistic normed spaces
DOI:
https://doi.org/10.24193/subbmath.2019.4.07Keywords:
Double sequences, t-norm, probabilistic normed spaces, e-convergence, statistical e-convergenceAbstract
The concept of statistical convergence for double sequences on probabilistic normed spaces was presented by Karakus and Demirci in 2007. The purpose of this paper is to introduce the concept of statistical e-convergence for double sequences and study some fundamental properties of statistical e-convergence for double sequences on probabilistic normed spaces.References
Alsina, C., Schweizer, B., Sklar, A., Continuity properties of probabilistic norms, J. Math. Anal. Appl., 208 (1997) 446-452.
Boos, J., Leiger, T., Zeller, K., Consistency theory for SM-methods, Acta Math. Hungar., 76 (1997) 83-116.
Boos, J., Classical and modern methods in summability, Oxford University Press Inc. (New York, 2000).
Fast, H., Sur la convergence statistique, Colloq. Math. 2 (1951) 241-244.
Frank, M. J., Probabilistic topological spaces, J. Math. Anal. Appl. 34 (1971) 67-81.
Fridy, J. A., On statistical convergence of multiple sequences, Analysis, 5 (1985) 301-313.
Guille'n, B. L., Lallena, J. A. R., Sempi, C., A study of boundedness in probabilistic normed spaces, J. Math. Anal. Appl., 232 (1999) 183-196.
Guille'n, B. L., Sempi, C., Probabilistic norms and convergence of random variables, J. Math. Anal. Appl., 280 (2003) 9-16.
Karakuş, S., Demirci, K., Duman, O., Equi-statistical convergence of positive linear operators, Journal of Mathematics, 33 (2009) 159-168.
Karakuş, S., Demirci, K., Duman, O., Statistical convergence on intuitionistic fuzzy normed spaces, Chaos Solitons and Fractals, 35 (2008) 763-769.
Karakus, S., Statistical convergence on probabilistic normed spaces, Mathematical Communications, 12 (2007) 11-23.
Karakus, S., Demirci, K., Statistical convergence of double sequences on probabilistic normed spaces, Int. J. Math. Sci. Article ID14737,11 pages (2007).
Menger, K., Statistical metrics, Proc. Nat. Acad. Sci. USA, 28 (1942) 535-537.
Moricz, F., Statistical convergence of multiple sequences, Arch. Math., 81 (2003) 82-89.
Mursaleen, M., Edely, Osama H.H., Statistical convergence of double sequences, J. Math. Anal. Appl., 288 (2003) 223-231.
Mursaleen, M., Edely, O. H. H., Statistical convergence of double sequences, Journal of Mathematical Analysis and Applications, 288 (1) (2003) 223-231.
Pringsheim, A., Zur theorie der zweifach unendlichen zahlenfolgen, Mathematische Annalen, 53 (3) (1900) 289-321.
Schweizer, B., Sklar, A., Statistical metric spaces, Pacific J. Math., 10 (1960) 313-334.
Schweizer, B., Sklar, A., Probabilistic metric spaces, North Holland, New York-Amsterdam-Oxford, 1983.
Sever, Y., Talo, Ö., Statistical e-convergence of double sequences and its application to Korovkin type approximation theorem for functions of two variables, Iran J. Sci. Technol Trans A Sci., 41 (3) (2017) 851-857.
Sever, Y., Talo, Ö., On statistical e-convergence of double sequences, Iran J. Sci. Technol Trans A Sci. Do.:10.1007/540995-017-0476-6.
Steinhaus, H., Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math., 2 (1951) 73--74.
Downloads
Published
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Transfer of copyright agreement: When the article is accepted for publication, the authors and the representative of the coauthors, hereby agree to transfer to Studia Universitatis Babeș-Bolyai Mathematica all rights, including those pertaining to electronic forms and transmissions, under existing copyright laws, except for the following, which the authors specifically retain: the authors can use the material however they want as long as it fits the NC ND terms of the license. The authors have all rights for reuse according to the license.