A generalized Ekeland's variational principle for vector equilibria

Mihaela Miholca

Abstract


In this paper, we establish an Ekeland-type variational principle for vector valued bifunctions defined on complete metric spaces with values in locally convex spaces ordered by closed convex cones. The main improvement consists in widening the class of bifunctions for which the variational principle holds. In order to prove this principle, a weak notion of continuity for vector valued functions is considered, and some of its properties are presented. We also furnish an existence result for vector equilibria in absence of
convexity assumptions, passing through the existence of approximate solutions of an optimization problem.

Keywords


Ekeland's variational principle, $(k_{0},K)$-lower semicontinuity, vector triangle inequality, vector equilibria

Full Text:

PDF

References


Ansari, Q.H., Vector equilibrium problems and vector variational inequalities, in: Vector Variational Inequalities and Vector Equilibria. Mathematical Theories, ed. by F. Giannessi (Kluwer Academic, Dordrecht/Boston/London), 2000, 1-15.

Q.H. Ansari, X.Q. Yang, J.C. Yao, Existence and duality of implicit vector variational problems, Numer. Funct. Anal. Optim. 22(7-8) (2001) 815-829.

Q.H. Ansari, I.V. Konnov, J.C. Yao, On generalized vector equilibrium problems. Nonlinear Anal. 47 (2001) 543-554.

Al-Homidan, S., Ansari, Q.H., Yao, J.-C., Some generalizations of Ekeland-type variational principle with applications to equilibrium problems and fixed point theory, Nonlinear Anal. 69(1)(2008), 126-139.

Ansari, Q.H., Vectorial form of Ekeland-type variational principle with applications to vector equilibrium problems and fixed point theory, J. Math. Anal. Appl. 334(2007), 561-575.

Ansari, Q.H., Ekeland's variational principle and its extensions with applications, in: Topics in Fixed Point Theory, ed. by S. Almezel, Q.H. Ansari, M.A. Khamsi (Springer, Cham/Heidelberg/New York/Dordrecht/London), 2014, 65-100.

Araya, Y., Ekeland's variational principle and its equivalent theorems in vector optimization, J. Math. Anal. Appl. 346(2008), 9-16.

Araya, Y., Kimura, K., Tanaka, T., Existence of vector equilibria via Ekeland's variational principle, ‎Taiwanese J. Math. 12(8)(2008), 1991-2000.

Bianchi, M., Hadjisavvas, N., Schaible, S., Vector equilibrium problems with generalized monotone bifunctions, J. Optim. Theory Appl. 92(3)(1997), 527-542.

Bianchi, M., Kassay, G., Pini, R., Ekeland's principle for vector equilibrium problems , Nonlinear Analysis 66(2007), 1454-1464.

Blum, E., Oettli, W., From optimization and variational inequalities to equilibrium problems, Math. Student, 63(1-4)(1994), 123-145.

Borwein, J. M., Penot, J. P., Th'{e}ra, M., Conjugate Convex Operators, J. Math. Anal. and Appl., 102(1984), 399-414.

Castellani, M., Giuli, M., Ekeland’s principle for cyclically antimonotone equilibrium problems, Nonlinear Analysis: Real World Applications 32(2016), 213-228.

Chen, G.Y., Huang, X.X., Stability results for Ekeland's e variational principle for vector valued functions, Math. Meth. Oper. Res. 48(1998), 97-103.

Ekeland, I., Sur les Probl'{e}ms Variationnels, C.R. Acad. Sci.Paris 275(1972), 1057-1059.

Finet, C., Quarta, L., Troestler, C., Vector-valued variational principles, Nonlinear Anal. 52(2003), 197-218.

Guti'{e}rrez, C., Kassay, G., Novo, V., Ródenas-Pedregosa, JL., Ekeland Variational Principles in Vector Equilibrium Problems, SIAM Journal on Optimization 27(4)(2017), 2405-2425.

G"{o}pfert, A., Riahi, H., Tammer, C., Zalinescu, C., Variational Methods in Partially Ordered Spaces, Springer-Verlag, New York, 2003.

G"{o}pfert, A., Tammer, C., Zalinescu, C., On the vectorial Ekeland’s variational principle and minimal points in product spaces, Nonlinear Anal. 39(2000), 909-922.

Khan, A., Tammer, C., Zu{a}linescu, C., Set-valued optimization, An introduction with application, Springer-Verlag, Berlin Heidelberg, 2015.

Luc, D.T., Theory of Vector Optimization, Springer-Verlag, Germany, 1989.

Oettli, W., Th'{e}ra, M., Equivalents of Ekeland’s principle, Bull. Austral. Math. Soc. 48(1993) 385-392.

Tammer, Ch., A generalization of Ekeland's variational principle, Optimization 25(1992), 129-141.

Gerth (Tammer), Chr., Weidner, P., Nonconvex separation theorems and some applications in vector optimization, J. Optim. Theory Appl. 67(1990), 297-320.

Th'{e}ra, M., Études des fonctions convexes vectorielles semi-continues, Thèse de 3e cycle, Université de Pau, 1978.




DOI: http://dx.doi.org/10.24193/subbmath.2019.4.11

Refbacks

  • There are currently no refbacks.