A generalized Ekeland's variational principle for vector equilibria
Abstract
convexity assumptions, passing through the existence of approximate solutions of an optimization problem.
Keywords
Full Text:
PDFReferences
Ansari, Q.H., Vector equilibrium problems and vector variational inequalities, in: Vector Variational Inequalities and Vector Equilibria. Mathematical Theories, ed. by F. Giannessi (Kluwer Academic, Dordrecht/Boston/London), 2000, 1-15.
Q.H. Ansari, X.Q. Yang, J.C. Yao, Existence and duality of implicit vector variational problems, Numer. Funct. Anal. Optim. 22(7-8) (2001) 815-829.
Q.H. Ansari, I.V. Konnov, J.C. Yao, On generalized vector equilibrium problems. Nonlinear Anal. 47 (2001) 543-554.
Al-Homidan, S., Ansari, Q.H., Yao, J.-C., Some generalizations of Ekeland-type variational principle with applications to equilibrium problems and fixed point theory, Nonlinear Anal. 69(1)(2008), 126-139.
Ansari, Q.H., Vectorial form of Ekeland-type variational principle with applications to vector equilibrium problems and fixed point theory, J. Math. Anal. Appl. 334(2007), 561-575.
Ansari, Q.H., Ekeland's variational principle and its extensions with applications, in: Topics in Fixed Point Theory, ed. by S. Almezel, Q.H. Ansari, M.A. Khamsi (Springer, Cham/Heidelberg/New York/Dordrecht/London), 2014, 65-100.
Araya, Y., Ekeland's variational principle and its equivalent theorems in vector optimization, J. Math. Anal. Appl. 346(2008), 9-16.
Araya, Y., Kimura, K., Tanaka, T., Existence of vector equilibria via Ekeland's variational principle, Taiwanese J. Math. 12(8)(2008), 1991-2000.
Bianchi, M., Hadjisavvas, N., Schaible, S., Vector equilibrium problems with generalized monotone bifunctions, J. Optim. Theory Appl. 92(3)(1997), 527-542.
Bianchi, M., Kassay, G., Pini, R., Ekeland's principle for vector equilibrium problems , Nonlinear Analysis 66(2007), 1454-1464.
Blum, E., Oettli, W., From optimization and variational inequalities to equilibrium problems, Math. Student, 63(1-4)(1994), 123-145.
Borwein, J. M., Penot, J. P., Th'{e}ra, M., Conjugate Convex Operators, J. Math. Anal. and Appl., 102(1984), 399-414.
Castellani, M., Giuli, M., Ekeland’s principle for cyclically antimonotone equilibrium problems, Nonlinear Analysis: Real World Applications 32(2016), 213-228.
Chen, G.Y., Huang, X.X., Stability results for Ekeland's e variational principle for vector valued functions, Math. Meth. Oper. Res. 48(1998), 97-103.
Ekeland, I., Sur les Probl'{e}ms Variationnels, C.R. Acad. Sci.Paris 275(1972), 1057-1059.
Finet, C., Quarta, L., Troestler, C., Vector-valued variational principles, Nonlinear Anal. 52(2003), 197-218.
Guti'{e}rrez, C., Kassay, G., Novo, V., Ródenas-Pedregosa, JL., Ekeland Variational Principles in Vector Equilibrium Problems, SIAM Journal on Optimization 27(4)(2017), 2405-2425.
G"{o}pfert, A., Riahi, H., Tammer, C., Zalinescu, C., Variational Methods in Partially Ordered Spaces, Springer-Verlag, New York, 2003.
G"{o}pfert, A., Tammer, C., Zalinescu, C., On the vectorial Ekeland’s variational principle and minimal points in product spaces, Nonlinear Anal. 39(2000), 909-922.
Khan, A., Tammer, C., Zu{a}linescu, C., Set-valued optimization, An introduction with application, Springer-Verlag, Berlin Heidelberg, 2015.
Luc, D.T., Theory of Vector Optimization, Springer-Verlag, Germany, 1989.
Oettli, W., Th'{e}ra, M., Equivalents of Ekeland’s principle, Bull. Austral. Math. Soc. 48(1993) 385-392.
Tammer, Ch., A generalization of Ekeland's variational principle, Optimization 25(1992), 129-141.
Gerth (Tammer), Chr., Weidner, P., Nonconvex separation theorems and some applications in vector optimization, J. Optim. Theory Appl. 67(1990), 297-320.
Th'{e}ra, M., Études des fonctions convexes vectorielles semi-continues, Thèse de 3e cycle, Université de Pau, 1978.
DOI: http://dx.doi.org/10.24193/subbmath.2019.4.11
Refbacks
- There are currently no refbacks.