On some new integral inequalities concerning twice differentiable generalized relative semi-$(m,h)$-preinvex mappings

Artion Kashuri, Tingsong Du, Rozana Liko

Abstract


The authors first present some integral inequalities for Gauss-Jacobi type quadrature formula involving generalized relative semi-$(m,h)$-preinvex mappings. And then, a new identity concerning twice differentiable mappings defined on $m$-invex set is derived. By using the notion of generalized relative semi-$(m,h)$-preinvexity and the obtained identity as an auxiliary result, some new estimates with respect to Hermite-Hadamard type inequalities via  conformable fractional integrals are established. These new presented inequalities are also applied to construct inequalities for special means.

Keywords


Hermite-Hadamard type inequality; fractional integrals; $m$-invex.

Full Text:

PDF

References


bibitem{TAbd}

T. Abdeljawad,

newblock {em On conformable fractional calculus}, J. Comput. Appl. Math., $mathbf{279}$, (2015), 57-66.

bibitem{An}

T. Antczak,

newblock {em Mean value in invexity analysis}, Nonlinear Anal., $mathbf{60}$, (2005), 1473-1484.

bibitem{Chen}

F. Chen,

newblock {em A note on Hermite-Hadamard inequalities for products of convex functions via Riemann-Liouville fractional integrals},

Ital. J. Pure Appl. Math., $mathbf{33}$, (2014), 299-306.

bibitem{FcSw}

F. X. Chen and S. H. Wu,

newblock {em Several complementary inequalities to inequalities of Hermite-Hadamard type for $s$-convex functions},

J. Nonlinear Sci. Appl., $mathbf{9}$, (2) (2016), 705-716.

bibitem{YARM2019}

Y. M. Chu, A. Kashuri, R. Liko and M. Adil Khan,

emph{Hermite-Hadamard type fractional integral inequalities for $MT_{(r;g,m,phi)}$-preinvex functions}, J. Comput. Anal. Appl., Vol. 168(2019), Accepted paper.

bibitem{CKKA}

Y. M. Chu, M. Adil Khan, T. U. Khan and T. Ali,

newblock {em Generalizations of Hermite-Hadamard type inequalities for $MT$-convex functions},

J. Nonlinear Sci. Appl., $mathbf{9}$, (5) (2016), 4305-4316.

bibitem{CWZ}

Y. M. Chu, G. D. Wang and X. H. Zhang,

newblock {em Schur convexity and Hadamard's inequality},

Math. Inequal. Appl., $mathbf{13}$, (4) (2010), 725-731.

bibitem{DPE}

S. S. Dragomir, J. Pev{c}ari'{c} and L. E. Persson,

newblock {em Some inequalities of Hadamard type},

Soochow J. Math., $mathbf{21}$, (1995), 335-341.

bibitem{DLL}

T. S. Du, J. G. Liao and Y. J. Li,

newblock {em Properties and integral inequalities of Hadamard-Simpson type for the generalized $(s,m)$-preinvex functions},

J. Nonlinear Sci. Appl., $mathbf{9}$, (2016), 3112-3126.

bibitem{Du2016}

T. S. Du, J. G. Liao, L. Z. Chen and M. U. Awan,

emph{Properties and Riemann-Liouville fractional Hermite-Hadamard inequalities for the generalized $(alpha, m)$-preinvex functions},

J. Inequal. Appl., textbf{2016}, (2016), Article ID 306, 24 pages.

bibitem{DuLY}

T. S. Du, Y. J. Li and Z. Q. Yang,

emph{A generalization of Simpson's inequality via differentiable mapping using extended $(s, m)$-convex functions},

Appl. Math. Comput., textbf{293} (2017), 358-369.

bibitem{AkRl}

A. Kashuri and R. Liko,

newblock {em Ostrowski type fractional integral inequalities for generalized $(s,m,varphi)$-preinvex functions},

Aust. J. Math. Anal. Appl., $mathbf{13}$, (1) (2016), Article 16, 1-11.

bibitem{ArtRoz1}

A. Kashuri and R. Liko,

newblock {em Generalizations of Hermite-Hadamard and Ostrowski type inequalities for $MT_{m}$-preinvex functions},

Proyecciones, $mathbf{36}$, (1) (2017), 45-80.

bibitem{ArtRoz}

A. Kashuri and R. Liko,

newblock {em Hermite-Hadamard type fractional integral inequalities for generalized $(r;s,m,varphi)$-preinvex functions},

Eur. J. Pure Appl. Math., $mathbf{10}$, (3) (2017), 495-505.

bibitem{Kaavoz}

H. Kavurmaci, M. Avci and M. E. "{O}zdemir,

newblock {em New inequalities of Hermite-Hadamard type for convex functions with applications},

J. Inequal. Appl., $mathbf{2011}$, (2011) Article ID 86, 11 pages.

bibitem{RKMHY}

R. Khalil, M. Al Horani, A. Yousef and M. Sababheh,

newblock {em A new definition of fractional derivative},

J. Comput. Appl. Math., $mathbf{264}$, (2014), 65-70.

bibitem{MYTA}

M. Adil Khan, Y. Khurshid and T. Ali,

newblock {em Hermite-Hadamard inequality for fractional integrals via $eta$-convex functions},

Acta Math. Univ. Comenianae, $mathbf{79}$, (1) (2017), 153-164.

bibitem{MYTNR}

M. Adil Khan, Y. Khurshid, T. Ali and N. Rehman,

newblock {em Inequalities for three times differentiable functions},

J. Math., Punjab Univ., $mathbf{48}$, (2) (2016), 35-48.

bibitem{MKTASSDMZS}

M. Adil Khan, T. Ali, S. S. Dragomir and M. Z. Sarikaya,

newblock {em Hermite- Hadamard type inequalities for conformable fractional integrals},

Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, (2017), doi:10.1007/s13398-017-0408-5.

bibitem{Makycakrlga3}

M. Adil Khan, Y. M. Chu, A. Kashuri, R. Liko and G. Ali,

{em New Hermite-Hadamard inequalities for conformable fractional integrals},

J. Funct. Spaces, In press.

bibitem{WLiu}

W. Liu,

newblock {em New integral inequalities involving beta function via $P$-convexity},

Miskolc Math. Notes, $mathbf{15}$, (2) (2014), 585-591.

bibitem{Liu}

W. Liu, W. Wen and J. Park,

newblock {em Ostrowski type fractional integral inequalities for $MT$-convex functions},

Miskolc Math. Notes, $mathbf{16}$, (1) (2015), 249-256.

bibitem{LWPa}

W. Liu, W. Wen and J. Park,

newblock {em Hermite-Hadamard type inequalities for $MT$-convex functions via classical integrals and fractional integrals},

J. Nonlinear Sci. Appl., $mathbf{9}$, (2016), 766-777.

bibitem{Cltdmkakys6}

C. Luo, T. S. Du, M. Adil Khan, A. Kashuri and Y. Shen,

newblock {em Some $k$-fractional integrals inequalities through generalized $varphi$-$m$-$MT$-preinvexity},

J. Comput. Anal. Appl., $mathbf{240}$, (2019), Accepted paper.

bibitem{Matloka2014}

M. Mat{l}oka,

emph{Inequalities for $h$-preinvex functions},

Appl. Math. Comput., textbf{234},(2014), 52-57.

bibitem{NooraMihai}

M. A. Noor, K. I. Noor and M. U. Awan,

emph{Integral inequalities for coordinated harmonically convex functions},

Complex Var. Elliptic Equ., textbf{60} (6), (2015), 776-786.

bibitem{OOmotoyinbo}

O. Omotoyinbo and A. Mogbodemu,

emph{Some new Hermite-Hadamard integral inequalities for convex functions},

Int. J. Sci. Innovation Tech., textbf{1}(1), (2014), 001-012.

bibitem{OSA}

M. E. "{O}zdemir, E. Set and M. Alomari,

newblock {em Integral inequalities via several kinds of convexity},

Creat. Math. Inform., $mathbf{20}$ (1), (2011), 62-73.

bibitem{Pachp}

B. G. Pachpatte,

newblock {em On some inequalities for convex functions},

RGMIA Res. Rep. Coll., $mathbf{6}$, (2003).

bibitem{Peng2017}

C. Peng, C. Zhou and T. S. Du,

emph{Riemann-Liouville fractional Simpson's inequalities through generalized $(m,h_1,h_2)$-preinvexity},

Ital. J. Pure Appl. Math., textbf{38}, (2017), 345-367.

bibitem{Pi}

R. Pini,

newblock {em Invexity and generalized convexity},

Optimization, $mathbf{22}$, (1991), 513-525.

bibitem{QiXi}

F. Qi and B. Y. Xi,

newblock {em Some integral inequalities of Simpson type for $GA-epsilon$-convex functions},

Georgian Math. J., $mathbf{20}$ (5), (2013), 775-788.

bibitem{ESAG}

E. Set and A. G"{o}zpinar,

newblock {em A study on Hermite-Hadamard type inequalities for $s$-convex functions via conformable fractional integrals},

Submitted, Online at: https://www.researchgate.net/publication/303382148.

bibitem{ESOIM}

E. Set, A. O. Akdemir and I. Mumcu,

newblock {em Ostrowski type inequalities for functions whose derivatives are convex via conformable fractional integrals},

Submitted, Online at: https://www.researchgate.net/publication/303382132.

bibitem{ESOIM1}

E. Set, A. O. Akdemir and I. Mumcu,

newblock {em Chebyshev type inequalities for conformable fractional integrals},

Submitted, Online at: https://www.researchgate.net/publication/303382135.

bibitem{ESIM11}

E. Set and I. Mumcu,

newblock {em Hermite-Hadamard-Fejer type inequalies for conformable fractional integrals},

Submitted, Online at: https://www.researchgate.net/publication/303382008.

bibitem{ESMSAG}

E. Set, M. Z. Sarikaya and A. G"{o}zpinar,

newblock {em Some Hermite-Hadamard type inequalities for convex functions via conformable fractional integrals and related inequalities},

Creat. Math. Inform., Accepted paper.

bibitem{HNShi}

H. N. Shi,

newblock {em Two Schur-convex functions related to Hadamard-type integral inequalities},

Publ. Math. Debrecen, $mathbf{78}$ (2), (2011), 393-403.

bibitem{SCB}

D. D. Stancu, G. Coman and P. Blaga,

newblock {em Analizu{a} numericu{a} c{s}i teoria aproximu{a}rii},

Cluj-Napoca: Presa Universitaru{a} Clujeanu{a}., $mathbf{2}$, (2002).

bibitem{M. Tunc}

M. Tunc{c}, E. G"{o}v and "{U}. c{S}anal,

emph{On $tgs$-convex function and their inequalities},

Facta Univ. Ser. Math. Inform., textbf{30}(5), (2015),679-691.

bibitem{Varo}

S. Varov{s}anec,

emph{On $h$-convexity},

J. Math. Anal. Appl., textbf{326}(1), (2007), 303-311.

bibitem{Youness}

E. A. Youness,

newblock {em E-convex sets, E-convex functions and E-convex programming},

J. Optim. Theory Appl., {bf102}, (1999), 439-450.

bibitem{ZCZ}

X. M. Zhang, Y. M. Chu and X. H. Zhang,

newblock {em The Hermite-Hadamard type inequality of $GA$-convex functions and its applications},

J. Inequal. Appl., textbf{2010}, (2010), Article ID 507560, 11 pages.

bibitem{YTHYA2018}

Y. Zhang, T. S. Du, H. Wang, Y. J. Shen and A. Kashuri,

emph{Extensions of different type parameterized inequalities for generalized $(m,h)$-preinvex mappings via $k$-fractional integrals}, J. Inequal. Appl., textbf{2018}(49), (2018), pp. 1-30.




DOI: http://dx.doi.org/10.24193/subbmath.2019.1.05

Refbacks

  • There are currently no refbacks.