On some new integral inequalities concerning twice differentiable generalized relative semi-$(m,h)$-preinvex mappings
Abstract
Keywords
Full Text:
PDFReferences
bibitem{TAbd}
T. Abdeljawad,
newblock {em On conformable fractional calculus}, J. Comput. Appl. Math., $mathbf{279}$, (2015), 57-66.
bibitem{An}
T. Antczak,
newblock {em Mean value in invexity analysis}, Nonlinear Anal., $mathbf{60}$, (2005), 1473-1484.
bibitem{Chen}
F. Chen,
newblock {em A note on Hermite-Hadamard inequalities for products of convex functions via Riemann-Liouville fractional integrals},
Ital. J. Pure Appl. Math., $mathbf{33}$, (2014), 299-306.
bibitem{FcSw}
F. X. Chen and S. H. Wu,
newblock {em Several complementary inequalities to inequalities of Hermite-Hadamard type for $s$-convex functions},
J. Nonlinear Sci. Appl., $mathbf{9}$, (2) (2016), 705-716.
bibitem{YARM2019}
Y. M. Chu, A. Kashuri, R. Liko and M. Adil Khan,
emph{Hermite-Hadamard type fractional integral inequalities for $MT_{(r;g,m,phi)}$-preinvex functions}, J. Comput. Anal. Appl., Vol. 168(2019), Accepted paper.
bibitem{CKKA}
Y. M. Chu, M. Adil Khan, T. U. Khan and T. Ali,
newblock {em Generalizations of Hermite-Hadamard type inequalities for $MT$-convex functions},
J. Nonlinear Sci. Appl., $mathbf{9}$, (5) (2016), 4305-4316.
bibitem{CWZ}
Y. M. Chu, G. D. Wang and X. H. Zhang,
newblock {em Schur convexity and Hadamard's inequality},
Math. Inequal. Appl., $mathbf{13}$, (4) (2010), 725-731.
bibitem{DPE}
S. S. Dragomir, J. Pev{c}ari'{c} and L. E. Persson,
newblock {em Some inequalities of Hadamard type},
Soochow J. Math., $mathbf{21}$, (1995), 335-341.
bibitem{DLL}
T. S. Du, J. G. Liao and Y. J. Li,
newblock {em Properties and integral inequalities of Hadamard-Simpson type for the generalized $(s,m)$-preinvex functions},
J. Nonlinear Sci. Appl., $mathbf{9}$, (2016), 3112-3126.
bibitem{Du2016}
T. S. Du, J. G. Liao, L. Z. Chen and M. U. Awan,
emph{Properties and Riemann-Liouville fractional Hermite-Hadamard inequalities for the generalized $(alpha, m)$-preinvex functions},
J. Inequal. Appl., textbf{2016}, (2016), Article ID 306, 24 pages.
bibitem{DuLY}
T. S. Du, Y. J. Li and Z. Q. Yang,
emph{A generalization of Simpson's inequality via differentiable mapping using extended $(s, m)$-convex functions},
Appl. Math. Comput., textbf{293} (2017), 358-369.
bibitem{AkRl}
A. Kashuri and R. Liko,
newblock {em Ostrowski type fractional integral inequalities for generalized $(s,m,varphi)$-preinvex functions},
Aust. J. Math. Anal. Appl., $mathbf{13}$, (1) (2016), Article 16, 1-11.
bibitem{ArtRoz1}
A. Kashuri and R. Liko,
newblock {em Generalizations of Hermite-Hadamard and Ostrowski type inequalities for $MT_{m}$-preinvex functions},
Proyecciones, $mathbf{36}$, (1) (2017), 45-80.
bibitem{ArtRoz}
A. Kashuri and R. Liko,
newblock {em Hermite-Hadamard type fractional integral inequalities for generalized $(r;s,m,varphi)$-preinvex functions},
Eur. J. Pure Appl. Math., $mathbf{10}$, (3) (2017), 495-505.
bibitem{Kaavoz}
H. Kavurmaci, M. Avci and M. E. "{O}zdemir,
newblock {em New inequalities of Hermite-Hadamard type for convex functions with applications},
J. Inequal. Appl., $mathbf{2011}$, (2011) Article ID 86, 11 pages.
bibitem{RKMHY}
R. Khalil, M. Al Horani, A. Yousef and M. Sababheh,
newblock {em A new definition of fractional derivative},
J. Comput. Appl. Math., $mathbf{264}$, (2014), 65-70.
bibitem{MYTA}
M. Adil Khan, Y. Khurshid and T. Ali,
newblock {em Hermite-Hadamard inequality for fractional integrals via $eta$-convex functions},
Acta Math. Univ. Comenianae, $mathbf{79}$, (1) (2017), 153-164.
bibitem{MYTNR}
M. Adil Khan, Y. Khurshid, T. Ali and N. Rehman,
newblock {em Inequalities for three times differentiable functions},
J. Math., Punjab Univ., $mathbf{48}$, (2) (2016), 35-48.
bibitem{MKTASSDMZS}
M. Adil Khan, T. Ali, S. S. Dragomir and M. Z. Sarikaya,
newblock {em Hermite- Hadamard type inequalities for conformable fractional integrals},
Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, (2017), doi:10.1007/s13398-017-0408-5.
bibitem{Makycakrlga3}
M. Adil Khan, Y. M. Chu, A. Kashuri, R. Liko and G. Ali,
{em New Hermite-Hadamard inequalities for conformable fractional integrals},
J. Funct. Spaces, In press.
bibitem{WLiu}
W. Liu,
newblock {em New integral inequalities involving beta function via $P$-convexity},
Miskolc Math. Notes, $mathbf{15}$, (2) (2014), 585-591.
bibitem{Liu}
W. Liu, W. Wen and J. Park,
newblock {em Ostrowski type fractional integral inequalities for $MT$-convex functions},
Miskolc Math. Notes, $mathbf{16}$, (1) (2015), 249-256.
bibitem{LWPa}
W. Liu, W. Wen and J. Park,
newblock {em Hermite-Hadamard type inequalities for $MT$-convex functions via classical integrals and fractional integrals},
J. Nonlinear Sci. Appl., $mathbf{9}$, (2016), 766-777.
bibitem{Cltdmkakys6}
C. Luo, T. S. Du, M. Adil Khan, A. Kashuri and Y. Shen,
newblock {em Some $k$-fractional integrals inequalities through generalized $varphi$-$m$-$MT$-preinvexity},
J. Comput. Anal. Appl., $mathbf{240}$, (2019), Accepted paper.
bibitem{Matloka2014}
M. Mat{l}oka,
emph{Inequalities for $h$-preinvex functions},
Appl. Math. Comput., textbf{234},(2014), 52-57.
bibitem{NooraMihai}
M. A. Noor, K. I. Noor and M. U. Awan,
emph{Integral inequalities for coordinated harmonically convex functions},
Complex Var. Elliptic Equ., textbf{60} (6), (2015), 776-786.
bibitem{OOmotoyinbo}
O. Omotoyinbo and A. Mogbodemu,
emph{Some new Hermite-Hadamard integral inequalities for convex functions},
Int. J. Sci. Innovation Tech., textbf{1}(1), (2014), 001-012.
bibitem{OSA}
M. E. "{O}zdemir, E. Set and M. Alomari,
newblock {em Integral inequalities via several kinds of convexity},
Creat. Math. Inform., $mathbf{20}$ (1), (2011), 62-73.
bibitem{Pachp}
B. G. Pachpatte,
newblock {em On some inequalities for convex functions},
RGMIA Res. Rep. Coll., $mathbf{6}$, (2003).
bibitem{Peng2017}
C. Peng, C. Zhou and T. S. Du,
emph{Riemann-Liouville fractional Simpson's inequalities through generalized $(m,h_1,h_2)$-preinvexity},
Ital. J. Pure Appl. Math., textbf{38}, (2017), 345-367.
bibitem{Pi}
R. Pini,
newblock {em Invexity and generalized convexity},
Optimization, $mathbf{22}$, (1991), 513-525.
bibitem{QiXi}
F. Qi and B. Y. Xi,
newblock {em Some integral inequalities of Simpson type for $GA-epsilon$-convex functions},
Georgian Math. J., $mathbf{20}$ (5), (2013), 775-788.
bibitem{ESAG}
E. Set and A. G"{o}zpinar,
newblock {em A study on Hermite-Hadamard type inequalities for $s$-convex functions via conformable fractional integrals},
Submitted, Online at: https://www.researchgate.net/publication/303382148.
bibitem{ESOIM}
E. Set, A. O. Akdemir and I. Mumcu,
newblock {em Ostrowski type inequalities for functions whose derivatives are convex via conformable fractional integrals},
Submitted, Online at: https://www.researchgate.net/publication/303382132.
bibitem{ESOIM1}
E. Set, A. O. Akdemir and I. Mumcu,
newblock {em Chebyshev type inequalities for conformable fractional integrals},
Submitted, Online at: https://www.researchgate.net/publication/303382135.
bibitem{ESIM11}
E. Set and I. Mumcu,
newblock {em Hermite-Hadamard-Fejer type inequalies for conformable fractional integrals},
Submitted, Online at: https://www.researchgate.net/publication/303382008.
bibitem{ESMSAG}
E. Set, M. Z. Sarikaya and A. G"{o}zpinar,
newblock {em Some Hermite-Hadamard type inequalities for convex functions via conformable fractional integrals and related inequalities},
Creat. Math. Inform., Accepted paper.
bibitem{HNShi}
H. N. Shi,
newblock {em Two Schur-convex functions related to Hadamard-type integral inequalities},
Publ. Math. Debrecen, $mathbf{78}$ (2), (2011), 393-403.
bibitem{SCB}
D. D. Stancu, G. Coman and P. Blaga,
newblock {em Analizu{a} numericu{a} c{s}i teoria aproximu{a}rii},
Cluj-Napoca: Presa Universitaru{a} Clujeanu{a}., $mathbf{2}$, (2002).
bibitem{M. Tunc}
M. Tunc{c}, E. G"{o}v and "{U}. c{S}anal,
emph{On $tgs$-convex function and their inequalities},
Facta Univ. Ser. Math. Inform., textbf{30}(5), (2015),679-691.
bibitem{Varo}
S. Varov{s}anec,
emph{On $h$-convexity},
J. Math. Anal. Appl., textbf{326}(1), (2007), 303-311.
bibitem{Youness}
E. A. Youness,
newblock {em E-convex sets, E-convex functions and E-convex programming},
J. Optim. Theory Appl., {bf102}, (1999), 439-450.
bibitem{ZCZ}
X. M. Zhang, Y. M. Chu and X. H. Zhang,
newblock {em The Hermite-Hadamard type inequality of $GA$-convex functions and its applications},
J. Inequal. Appl., textbf{2010}, (2010), Article ID 507560, 11 pages.
bibitem{YTHYA2018}
Y. Zhang, T. S. Du, H. Wang, Y. J. Shen and A. Kashuri,
emph{Extensions of different type parameterized inequalities for generalized $(m,h)$-preinvex mappings via $k$-fractional integrals}, J. Inequal. Appl., textbf{2018}(49), (2018), pp. 1-30.
DOI: http://dx.doi.org/10.24193/subbmath.2019.1.05
Refbacks
- There are currently no refbacks.