On some new integral inequalities concerning twice differentiable generalized relative semi-$(m,h)$-preinvex mappings
DOI:
https://doi.org/10.24193/subbmath.2019.1.05Keywords:
Hermite-Hadamard type inequality, fractional integrals, $m$-invex.Abstract
The authors first present some integral inequalities for Gauss-Jacobi type quadrature formula involving generalized relative semi-$(m,h)$-preinvex mappings. And then, a new identity concerning twice differentiable mappings defined on $m$-invex set is derived. By using the notion of generalized relative semi-$(m,h)$-preinvexity and the obtained identity as an auxiliary result, some new estimates with respect to Hermite-Hadamard type inequalities via conformable fractional integrals are established. These new presented inequalities are also applied to construct inequalities for special means.References
bibitem{TAbd}
T. Abdeljawad,
newblock {em On conformable fractional calculus}, J. Comput. Appl. Math., $mathbf{279}$, (2015), 57-66.
bibitem{An}
T. Antczak,
newblock {em Mean value in invexity analysis}, Nonlinear Anal., $mathbf{60}$, (2005), 1473-1484.
bibitem{Chen}
F. Chen,
newblock {em A note on Hermite-Hadamard inequalities for products of convex functions via Riemann-Liouville fractional integrals},
Ital. J. Pure Appl. Math., $mathbf{33}$, (2014), 299-306.
bibitem{FcSw}
F. X. Chen and S. H. Wu,
newblock {em Several complementary inequalities to inequalities of Hermite-Hadamard type for $s$-convex functions},
J. Nonlinear Sci. Appl., $mathbf{9}$, (2) (2016), 705-716.
bibitem{YARM2019}
Y. M. Chu, A. Kashuri, R. Liko and M. Adil Khan,
emph{Hermite-Hadamard type fractional integral inequalities for $MT_{(r;g,m,phi)}$-preinvex functions}, J. Comput. Anal. Appl., Vol. 168(2019), Accepted paper.
bibitem{CKKA}
Y. M. Chu, M. Adil Khan, T. U. Khan and T. Ali,
newblock {em Generalizations of Hermite-Hadamard type inequalities for $MT$-convex functions},
J. Nonlinear Sci. Appl., $mathbf{9}$, (5) (2016), 4305-4316.
bibitem{CWZ}
Y. M. Chu, G. D. Wang and X. H. Zhang,
newblock {em Schur convexity and Hadamard's inequality},
Math. Inequal. Appl., $mathbf{13}$, (4) (2010), 725-731.
bibitem{DPE}
S. S. Dragomir, J. Pev{c}ari'{c} and L. E. Persson,
newblock {em Some inequalities of Hadamard type},
Soochow J. Math., $mathbf{21}$, (1995), 335-341.
bibitem{DLL}
T. S. Du, J. G. Liao and Y. J. Li,
newblock {em Properties and integral inequalities of Hadamard-Simpson type for the generalized $(s,m)$-preinvex functions},
J. Nonlinear Sci. Appl., $mathbf{9}$, (2016), 3112-3126.
bibitem{Du2016}
T. S. Du, J. G. Liao, L. Z. Chen and M. U. Awan,
emph{Properties and Riemann-Liouville fractional Hermite-Hadamard inequalities for the generalized $(alpha, m)$-preinvex functions},
J. Inequal. Appl., textbf{2016}, (2016), Article ID 306, 24 pages.
bibitem{DuLY}
T. S. Du, Y. J. Li and Z. Q. Yang,
emph{A generalization of Simpson's inequality via differentiable mapping using extended $(s, m)$-convex functions},
Appl. Math. Comput., textbf{293} (2017), 358-369.
bibitem{AkRl}
A. Kashuri and R. Liko,
newblock {em Ostrowski type fractional integral inequalities for generalized $(s,m,varphi)$-preinvex functions},
Aust. J. Math. Anal. Appl., $mathbf{13}$, (1) (2016), Article 16, 1-11.
bibitem{ArtRoz1}
A. Kashuri and R. Liko,
newblock {em Generalizations of Hermite-Hadamard and Ostrowski type inequalities for $MT_{m}$-preinvex functions},
Proyecciones, $mathbf{36}$, (1) (2017), 45-80.
bibitem{ArtRoz}
A. Kashuri and R. Liko,
newblock {em Hermite-Hadamard type fractional integral inequalities for generalized $(r;s,m,varphi)$-preinvex functions},
Eur. J. Pure Appl. Math., $mathbf{10}$, (3) (2017), 495-505.
bibitem{Kaavoz}
H. Kavurmaci, M. Avci and M. E. "{O}zdemir,
newblock {em New inequalities of Hermite-Hadamard type for convex functions with applications},
J. Inequal. Appl., $mathbf{2011}$, (2011) Article ID 86, 11 pages.
bibitem{RKMHY}
R. Khalil, M. Al Horani, A. Yousef and M. Sababheh,
newblock {em A new definition of fractional derivative},
J. Comput. Appl. Math., $mathbf{264}$, (2014), 65-70.
bibitem{MYTA}
M. Adil Khan, Y. Khurshid and T. Ali,
newblock {em Hermite-Hadamard inequality for fractional integrals via $eta$-convex functions},
Acta Math. Univ. Comenianae, $mathbf{79}$, (1) (2017), 153-164.
bibitem{MYTNR}
M. Adil Khan, Y. Khurshid, T. Ali and N. Rehman,
newblock {em Inequalities for three times differentiable functions},
J. Math., Punjab Univ., $mathbf{48}$, (2) (2016), 35-48.
bibitem{MKTASSDMZS}
M. Adil Khan, T. Ali, S. S. Dragomir and M. Z. Sarikaya,
newblock {em Hermite- Hadamard type inequalities for conformable fractional integrals},
Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, (2017), doi:10.1007/s13398-017-0408-5.
bibitem{Makycakrlga3}
M. Adil Khan, Y. M. Chu, A. Kashuri, R. Liko and G. Ali,
{em New Hermite-Hadamard inequalities for conformable fractional integrals},
J. Funct. Spaces, In press.
bibitem{WLiu}
W. Liu,
newblock {em New integral inequalities involving beta function via $P$-convexity},
Miskolc Math. Notes, $mathbf{15}$, (2) (2014), 585-591.
bibitem{Liu}
W. Liu, W. Wen and J. Park,
newblock {em Ostrowski type fractional integral inequalities for $MT$-convex functions},
Miskolc Math. Notes, $mathbf{16}$, (1) (2015), 249-256.
bibitem{LWPa}
W. Liu, W. Wen and J. Park,
newblock {em Hermite-Hadamard type inequalities for $MT$-convex functions via classical integrals and fractional integrals},
J. Nonlinear Sci. Appl., $mathbf{9}$, (2016), 766-777.
bibitem{Cltdmkakys6}
C. Luo, T. S. Du, M. Adil Khan, A. Kashuri and Y. Shen,
newblock {em Some $k$-fractional integrals inequalities through generalized $varphi$-$m$-$MT$-preinvexity},
J. Comput. Anal. Appl., $mathbf{240}$, (2019), Accepted paper.
bibitem{Matloka2014}
M. Mat{l}oka,
emph{Inequalities for $h$-preinvex functions},
Appl. Math. Comput., textbf{234},(2014), 52-57.
bibitem{NooraMihai}
M. A. Noor, K. I. Noor and M. U. Awan,
emph{Integral inequalities for coordinated harmonically convex functions},
Complex Var. Elliptic Equ., textbf{60} (6), (2015), 776-786.
bibitem{OOmotoyinbo}
O. Omotoyinbo and A. Mogbodemu,
emph{Some new Hermite-Hadamard integral inequalities for convex functions},
Int. J. Sci. Innovation Tech., textbf{1}(1), (2014), 001-012.
bibitem{OSA}
M. E. "{O}zdemir, E. Set and M. Alomari,
newblock {em Integral inequalities via several kinds of convexity},
Creat. Math. Inform., $mathbf{20}$ (1), (2011), 62-73.
bibitem{Pachp}
B. G. Pachpatte,
newblock {em On some inequalities for convex functions},
RGMIA Res. Rep. Coll., $mathbf{6}$, (2003).
bibitem{Peng2017}
C. Peng, C. Zhou and T. S. Du,
emph{Riemann-Liouville fractional Simpson's inequalities through generalized $(m,h_1,h_2)$-preinvexity},
Ital. J. Pure Appl. Math., textbf{38}, (2017), 345-367.
bibitem{Pi}
R. Pini,
newblock {em Invexity and generalized convexity},
Optimization, $mathbf{22}$, (1991), 513-525.
bibitem{QiXi}
F. Qi and B. Y. Xi,
newblock {em Some integral inequalities of Simpson type for $GA-epsilon$-convex functions},
Georgian Math. J., $mathbf{20}$ (5), (2013), 775-788.
bibitem{ESAG}
E. Set and A. G"{o}zpinar,
newblock {em A study on Hermite-Hadamard type inequalities for $s$-convex functions via conformable fractional integrals},
Submitted, Online at: https://www.researchgate.net/publication/303382148.
bibitem{ESOIM}
E. Set, A. O. Akdemir and I. Mumcu,
newblock {em Ostrowski type inequalities for functions whose derivatives are convex via conformable fractional integrals},
Submitted, Online at: https://www.researchgate.net/publication/303382132.
bibitem{ESOIM1}
E. Set, A. O. Akdemir and I. Mumcu,
newblock {em Chebyshev type inequalities for conformable fractional integrals},
Submitted, Online at: https://www.researchgate.net/publication/303382135.
bibitem{ESIM11}
E. Set and I. Mumcu,
newblock {em Hermite-Hadamard-Fejer type inequalies for conformable fractional integrals},
Submitted, Online at: https://www.researchgate.net/publication/303382008.
bibitem{ESMSAG}
E. Set, M. Z. Sarikaya and A. G"{o}zpinar,
newblock {em Some Hermite-Hadamard type inequalities for convex functions via conformable fractional integrals and related inequalities},
Creat. Math. Inform., Accepted paper.
bibitem{HNShi}
H. N. Shi,
newblock {em Two Schur-convex functions related to Hadamard-type integral inequalities},
Publ. Math. Debrecen, $mathbf{78}$ (2), (2011), 393-403.
bibitem{SCB}
D. D. Stancu, G. Coman and P. Blaga,
newblock {em Analizu{a} numericu{a} c{s}i teoria aproximu{a}rii},
Cluj-Napoca: Presa Universitaru{a} Clujeanu{a}., $mathbf{2}$, (2002).
bibitem{M. Tunc}
M. Tunc{c}, E. G"{o}v and "{U}. c{S}anal,
emph{On $tgs$-convex function and their inequalities},
Facta Univ. Ser. Math. Inform., textbf{30}(5), (2015),679-691.
bibitem{Varo}
S. Varov{s}anec,
emph{On $h$-convexity},
J. Math. Anal. Appl., textbf{326}(1), (2007), 303-311.
bibitem{Youness}
E. A. Youness,
newblock {em E-convex sets, E-convex functions and E-convex programming},
J. Optim. Theory Appl., {bf102}, (1999), 439-450.
bibitem{ZCZ}
X. M. Zhang, Y. M. Chu and X. H. Zhang,
newblock {em The Hermite-Hadamard type inequality of $GA$-convex functions and its applications},
J. Inequal. Appl., textbf{2010}, (2010), Article ID 507560, 11 pages.
bibitem{YTHYA2018}
Y. Zhang, T. S. Du, H. Wang, Y. J. Shen and A. Kashuri,
emph{Extensions of different type parameterized inequalities for generalized $(m,h)$-preinvex mappings via $k$-fractional integrals}, J. Inequal. Appl., textbf{2018}(49), (2018), pp. 1-30.
Downloads
Additional Files
Published
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Transfer of copyright agreement: When the article is accepted for publication, the authors and the representative of the coauthors, hereby agree to transfer to Studia Universitatis Babeș-Bolyai Mathematica all rights, including those pertaining to electronic forms and transmissions, under existing copyright laws, except for the following, which the authors specifically retain: the authors can use the material however they want as long as it fits the NC ND terms of the license. The authors have all rights for reuse according to the license.