Perturbations of local C-cosine functions
Abstract
We show that $\tA+\tB$ is a closed subgenerator of a local $\tC$-cosine function $\tT(\cdot)$ on a complex Banach space $\tX$ defined by
$$\tT(t)x=\sum\limits_{n=0}^\infty \tB^n\int_0^tj_{n-1}(s)j_n(t-s)\tC(|t-2s|)xds$$
for all $x\in\tX$ and
$0\leq t<T_0$, if $\tA$ is a closed subgenerator of
a local $\tC$-cosine function $\tC(\cdot)$ on $\tX$ and one of the following cases holds:
$(i)$ $\tC(\cdot)$ is exponentially bounded, and $\tB$ is a bounded
linear operator on $\overline{\tD(\tA)}$ so that $\tB\tC=\tC\tB$ on $\overline{\tD(\tA)}$ and $\tB\tA\subset\tA\tB$;
$(ii)$ $\tB$ is a bounded linear operator on $\overline{\tD(\tA)}$ which commutes with
$\tC(\cdot)$ on $\overline{\tD(\tA)}$ and $\tB\tA\subset\tA\tB$;
$(iii)$ $\tB$ is a bounded linear operator on $\tX$ which commutes with
$\tC(\cdot)$ on $\tX$.
Here $j_n(t)=\frac{t^n}{n!}$ for all $t\in\Bbb R$, and
$$\int_0^tj_{-1}(s)j_0(t-s)\tC(|t-2s|)xds=\tC(t)x$$
for all $x\in\tX$ and $0\leq t<T_0$.
Keywords
Full Text:
PDFReferences
W. Arendt, C.J.K. Batty, H. Hieber and F. Neubrander, Vecctor-Valued Laplace Transforms and
Cauchy Problems, 96, Birkhauser Verlag, Basel-Boston-Berlin, 2001.
R. deLaubenfels,, Existence Families, Functional Calculi and Evolution Equations, Lecture notes in
Math., , 1570, springer-Verlag, Berlin, 1994.
K.-J. Engel, On Singular Perturbations of Second Order Cauchy Problems, Pacific J. Math. 152
(1992), 79-91.
H.O. Fattorini, Second Order Linear Differential Equations in Banach Spaces, in North-Holland Math.
Stud., 108, North-Holland, Amsterdam, 1985.
F. Huang and T. Huang, Local C-Cosine Family Theory and Application, Chin. Ann. Math. 16 (1995),
-232.
J.A. Goldstein, Semigroups of Linear Operators and Applications, Oxford, 1985.
M.C. Gao, Local C-Semigroups and C-Cosine Functions, Acta Math. Sci. 19 (1999), 201-213.
M. Kostic, Perturbation Theorems for Convoluted C-Semigroups and Cosine Functions, Bull.Ci.Sci.Math.
(2010), 25-47.
M. Kostic, Generalized Semigroups and Cosine Functions, Mathematical Institute Belgrade, 2011.
C.-C. Kuo and S.-Y. Shaw, C-Cosine Functions and the Abstract Cauchy Problem I, II, J. Math.
Anal. Appl. 210 (1997), 632-646, 647-666.
C.-C. Kuo, On -Times Integrated C-Cosine Functions and Abstract Cauchy Problem I, J. Math.
Anal. Appl. 313 (2006), 142-162.
C.-C. Kuo, Local K-Convoluted C-Cosine Functions and Abstract Cauchy Problems, Filomat 30(3)
(2016), 2583-2598..
C.-C. Kuo, On Perturbation of -Times Integrated C-Semigroups, Taiwanese J. Math. 14(5) (2010),
-1992.
F. Li, Multiplicative Perturbations of Incomplete Second Order Abstract Differential Equations, Kybernetes
(9-10) (2008), 1431-1437.
F. Li and J. Liang, Multiplicative Perturbation Theorems for Regularized Cosine Functions, Acta
Math. Sinica 46 (2003), 119-130.
F. Li and J. Liu, A Perturbation Theorem for Local C-Regularized Cosine Functions, J. Physics:
Conference Series 96 (2008), 1-5.
Y.-C. Li and S.-Y. Shaw, Perturbation of Non-exponentially-Bounded -Times Integrated C-Semigroups,
J. Math. Soc. Japan 55 (2003), 1115-1136.
S.-Y. Shaw and Y.-C. Li, Characterization and Generator of Local C-Cosine and C-Sine Functions,
Inter. J. Evolution Equations 1(4) (2005), 373-401.
T. Takenaka and N. Okazwa, A Phillips-Miyadera Type Perturbation Theorem for Cosine Functions
of Operators, Tohoku. Math. 69 (1990), 257-288.
T. Takenaka and S. Piskarev, Local C-Cosine Families and N-Times Integrated Local Cosine Families,
Taiwanese J. Math. 8 (2004), 515-546.
C.C. Travis and G.F. Webb, Perturbation of Strongly Continuous Cosine Family Generators, Colleq.
Math. 45 (1981), 277-285.
S.W. Wang and M.C. Gao, Automatic Extensions of Local Regularized Semigroups and Local Regularized
Cosine Functions, Proc. Amer. Math. Soc. 127 (1999), 1651-1663.
DOI: http://dx.doi.org/10.24193/subbmath.2020.4.08
Refbacks
- There are currently no refbacks.