Differential subordinations obtained by using a fractional operator

Authors

DOI:

https://doi.org/10.24193/subbmath.2018.4.05

Keywords:

differential subordination, analytic function, fractional operator, convex function

Abstract

We investigate several differential subordinations using the fractional operator $\mathbb{D}_\lambda^{\nu, n}:\mathcal{A}\to\mathcal{A}$, for $-\infty<\lambda<2, \nu>-1, n\in\mathbb{N}_0=\{0,1,2,...\}$, introduced in \cite{7}.

References

S. S. Miller, P. T. Mocanu,

Differential Subordinations: Theory and Applications, Pure and Applied Mathematics No. 225, Marcel Dekker, New York, 2000.

S. S. Miller, P. T. Mocanu,

On some classes of first order differential subordinations, Michigan Math. J., 32(1985), 185-195.

S. Owa,

On the distortion theorems I, Kyungpook Math. J., 18(1978), 53-59.

S. Owa, H. M. Srivastava,

Univalent and starlike generalized hypergeometric functions, Canad. J. Math., 39(1987), 1057-1077.

St. Ruscheweyh,

New criteria for univalent functions, Proc. Amer. Math. Soc., 49(1975), 109-115.

G. Ş. Sălăgean,

Subclasses of univalent functions, Lecture Notes in Math. (Springer Verlag), 1013(1983), 362-372.

P. Sharma, R. K. Raina, G. Ş. Sălăgean,

Some Geometric Properties of Analytic Functions Involving a new Fractional Operator, Mediterr. J. Math., 13(2016), 4591-4605.

E. Szatmari,

On a class of analytic functions defined by a fractional operator, submitted

Downloads

Published

2018-12-08

Issue

Section

Articles